985 resultados para Automatic selection
Resumo:
-
Resumo:
Search engines have forever changed the way people access and discover knowledge, allowing information about almost any subject to be quickly and easily retrieved within seconds. As increasingly more material becomes available electronically the influence of search engines on our lives will continue to grow. This presents the problem of how to find what information is contained in each search engine, what bias a search engine may have, and how to select the best search engine for a particular information need. This research introduces a new method, search engine content analysis, in order to solve the above problem. Search engine content analysis is a new development of traditional information retrieval field called collection selection, which deals with general information repositories. Current research in collection selection relies on full access to the collection or estimations of the size of the collections. Also collection descriptions are often represented as term occurrence statistics. An automatic ontology learning method is developed for the search engine content analysis, which trains an ontology with world knowledge of hundreds of different subjects in a multilevel taxonomy. This ontology is then mined to find important classification rules, and these rules are used to perform an extensive analysis of the content of the largest general purpose Internet search engines in use today. Instead of representing collections as a set of terms, which commonly occurs in collection selection, they are represented as a set of subjects, leading to a more robust representation of information and a decrease of synonymy. The ontology based method was compared with ReDDE (Relevant Document Distribution Estimation method for resource selection) using the standard R-value metric, with encouraging results. ReDDE is the current state of the art collection selection method which relies on collection size estimation. The method was also used to analyse the content of the most popular search engines in use today, including Google and Yahoo. In addition several specialist search engines such as Pubmed and the U.S. Department of Agriculture were analysed. In conclusion, this research shows that the ontology based method mitigates the need for collection size estimation.
Resumo:
The availability of innumerable intelligent building (IB) products, and the current dearth of inclusive building component selection methods suggest that decision makers might be confronted with the quandary of forming a particular combination of components to suit the needs of a specific IB project. Despite this problem, few empirical studies have so far been undertaken to analyse the selection of the IB systems, and to identify key selection criteria for major IB systems. This study is designed to fill these research gaps. Two surveys: a general survey and the analytic hierarchy process (AHP) survey are proposed to achieve these objectives. The first general survey aims to collect general views from IB experts and practitioners to identify the perceived critical selection criteria, while the AHP survey was conducted to prioritize and assign the important weightings for the perceived criteria in the general survey. Results generally suggest that each IB system was determined by a disparate set of selection criteria with different weightings. ‘Work efficiency’ is perceived to be most important core selection criterion for various IB systems, while ‘user comfort’, ‘safety’ and ‘cost effectiveness’ are also considered to be significant. Two sub-criteria, ‘reliability’ and ‘operating and maintenance costs’, are regarded as prime factors to be considered in selecting IB systems. The current study contributes to the industry and IB research in at least two aspects. First, it widens the understanding of the selection criteria, as well as their degree of importance, of the IB systems. It also adopts a multi-criteria AHP approach which is a new method to analyse and select the building systems in IB. Further research would investigate the inter-relationship amongst the selection criteria.