891 resultados para Associated production


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proliferation, migration-associated differentiation, and cell death occur continuously and in a spatially well-organized fashion along the crypt-villus axis of the mouse small intestine, making it an attractive system for studying how these processes are regulated and interrelated. A pathway for producing glycoconjugates was engineered in adult FVB/N transgenic mice by expressing a human alpha 1,3/4-fucosyltransferase (alpha 1,3/4-FT; EC 2.4.1.65) along the length of this crypt-villus axis. The alpha 1,3/4-FT can use lacto-N-tetraose or lacto-neo-N-tetraose core chains to generate Lewis (Le) blood group antigens Le(a) or Le(x), respectively, and H type 1 or H type 2 core chains to produce Leb and Le(y). Single- and multilabel immunohistochemical studies revealed that expression of the alpha 1,3/4-FT results in production of Le(a) and Leb antigens in both undifferentiated proliferated crypt cells and in differentiated postmitotic villus-associated epithelial cells. In contrast, Le(x) antigens were restricted to crypt cells. Villus enterocytes can be induced to reenter the cell cycle by expression of simian virus 40 tumor antigen under the control of a promoter that only functions in differentiated members of this lineage. Bitransgenic animals, generated from a cross of FVB/N alpha 1,3/4-FT with FVB/N simian virus 40 tumor antigen mice, expand the range of Le(x) expression to include villus-associated enterocytes that have reentered the cell cycle. Thus, the fucosylations unveil a proliferation-dependent switch in oligosaccharide production, as defined by a monoclonal antibody specific for the Le(x) epitope. These findings show that genetic engineering of oligosaccharide biosynthetic pathways can be used to define markers for entry into, or progression through, the cell cycle and to identify changes in endogenous carbohydrate metabolism that occur when proliferative status is altered in a manner that is not deleterious to the system under study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an ubiquitous Gram-negative opportunistic pathogen that is commonly found in nosocomial infections, immunocompromised patients and burn victims. In addition, P. aeruginosa colonizes the lungs of cystic fibrosis patients, leading to chronic infection, which inevitably leads to their demise. In this research, I analyzed the factors contributing to P. aeruginosa antibiotic resistance, such as the biofilm mode of growth, alginate production, and 13-lactamase synthesis. Using the biofilm eradication assay (MBEC™ assay), I exposed P. aeruginosa to B-lactams (piperacillin, ceftazidime, and cefotaxime ), aminoglycosides ( amikacin, tobramycin and gentamicin), and a fluoroquinolone ( ciprofloxacin) at various concentrations. I analyzed the effects of biofilm on P. aeruginosa antibiotic resistance, and confirmed that the parent strain PAO 1 biofilms cells were > 100 times more resistant than planktonic (freefloating) cells. The constitutively alginate-producing strain PDO300 exhibited an altered resistance pattern as compared to the parent strain P AO 1. Finally, the role of AmpR, the regulator of ampC-encoded 13-lactamase expression was analyzed by determining the resistance of the strain carrying a mutation in the ampR gene and compared to the parent strain PAOl. It was confirmed that the loss of ampR contributes to increased antibiotic resistance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Este trabalho teve por objetivo identificar as espécies de moscas frugívoras (Tephritidae e Lonchaeidae), seus hospedeiros e parasitoides na Ilha de Santana, Estado do Amapá, Amazônia brasileira. Adicionalmente, objetivou estudar a exploração hospedeira por Bactrocera carambolae Drew & Hancock. Foram realizadas coletas de frutos de diversas espécies vegetais, a cada 30 dias, no período de janeiro a julho de 2015. Foram coletadas 149 amostras de frutos (3.142 frutos, 76,3 Kg), pertencentes a 20 espécies vegetais (9 nativas e 11 introduzidas) de 13 famílias botânicas. Houve infestação por moscas frugívoras em 86 amostras (11 espécies de 8 famílias botânicas). Foram obtidos espécimes de cinco espécies de Tephritidae, quatro de Lonchaeidae e três de parasitoides Braconidae. As espécies de moscas frugívoras mais importantes na Ilha de Santana são: B. carambolae, devido sua expressão quarentenária; e Anastrepha obliqua (Macquart) e Anastrepha striata Schiner, pelo fato de infestarem espécies vegetais de importância socioeconômica local. Os hospedeiros Averrhoa carambola (Oxalidaceae), Eugenia uniflora (Myrtaceae), Malpighia emarginata (Malpighiaceae) e Psidium guajava (Myrtaceae) são responsáveis pela manutenção da população de B. carambolae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter outlines examples of classroom activities that aim to make connections between young people’s everyday experiences with video games and the formal high school curriculum. These classroom activities were developed within the emerging field of digital media literacy. Digital media literacy combines elements of ‘traditional’ approaches to media education with elements of technology and information education (Buckingham, 2007; Warschauer, 2006). It is an educational field that has gained significant attention in recent years. For example, digital media literacy has become a significant objective for media policy makers in response to the increased social and cultural roles of new media technologies and controversies associated with young people’s largely unregulated online participation. Media regulators, educational institutions and independent organizations1 in the United States, Canada, the United Kingdom and Australia have developed digital media literacy initiatives that aim to provide advice to parents, teachers and young people.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study, in its exploration of the attached play scripts and their method of development, evaluates the forms, strategies, and methods of an organised model of formalised playwriting. Through the examination, reflection and reaction to a perceived crisis in playwriting in the Australian theatre sector, the notion of Industrial Playwriting is arrived at: a practice whereby plays are designed and constructed, and where the process of writing becomes central to the efficient creation of new work and the improvement of the writer’s skill and knowledge base. Using a practice-led methodology and action research the study examines a system of play construction appropriate to and addressing the challenges of the contemporary Australian theatre sector. Specifically, using the action research methodology known as design-based research a conceptual framework was constructed to form the basis of the notion of Industrial Playwriting. From this two plays were constructed using a case study method and the process recorded and used to create a practical, step-by-step system of Industrial Playwriting. In the creative practice of manufacturing a single authored play, and then a group-devised play, Industrial Playwriting was tested and found to also offer a valid alternative approach to playwriting in the training of new and even emerging playwrights. Finally, it offered insight into how Industrial Playwriting could be used to greatly facilitate theatre companies’ ongoing need to have access to new writers and new Australian works, and how it might form the basis of a cost effective writer development model. This study of the methods of formalised writing as a means to confront some of the challenges of the Australian theatre sector, the practice of playwriting and the history associated with it, makes an original and important contribution to contemporary playwriting practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants have been identified as promising expression systems for the commercial production of recombinant proteins. Plant-based protein production or “biofarming” offers a number of advantages over traditional expression systems in terms of scale of production, the capacity for post-translation processing, providing a product free of contaminants and cost effectiveness. A number of pharmaceutically important and commercially valuable proteins, such as antibodies, biopharmaceuticals and industrial enzymes are currently being produced in plant expression systems. However, several challenges still remain to improve recombinant protein yield with no ill effect on the host plant. The ability for transgenic plants to produce foreign proteins at commercially viable levels can be directly related to the level and cell specificity of the selected promoter driving the transgene. The accumulation of recombinant proteins may be controlled by a tissue-specific, developmentally-regulated or chemically-inducible promoter such that expression of recombinant proteins can be spatially- or temporally- controlled. The strict control of gene expression is particularly useful for proteins that are considered toxic and whose expression is likely to have a detrimental effect on plant growth. To date, the most commonly used promoter in plant biotechnology is the cauliflower mosaic virus (CaMV) 35S promoter which is used to drive strong, constitutive transgene expression in most organs of transgenic plants. Of particular interest to researchers in the Centre for Tropical Crops and Biocommodities at QUT are tissue-specific promoters for the accumulation of foreign proteins in the roots, seeds and fruit of various plant species, including tobacco, banana and sugarcane. Therefore this Masters project aimed to isolate and characterise root- and seed-specific promoters for the control of genes encoding recombinant proteins in plant-based expression systems. Additionally, the effects of matching cognate terminators with their respective gene promoters were assessed. The Arabidopsis root promoters ARSK1 and EIR1 were selected from the literature based on their reported limited root expression profiles. Both promoters were analysed using the PlantCARE database to identify putative motifs or cis-acting elements that may be associated with this activity. A number of motifs were identified in the ARSK1 promoter region including, WUN (wound-inducible), MBS (MYB binding site), Skn-1, and a RY core element (seed-specific) and in the EIR1 promoter region including, Skn-1 (seed-specific), Box-W1 (fungal elicitor), Aux-RR core (auxin response) and ABRE (ABA response). However, no previously reported root-specific cis-acting elements were observed in either promoter region. To confirm root specificity, both promoters, and truncated versions, were fused to the GUS reporter gene and the expression cassette introduced into Arabidopsis via Agrobacterium-mediated transformation. Despite the reported tissue-specific nature of these promoters, both upstream regulatory regions directed constitutive GUS expression in all transgenic plants. Further, similar levels of GUS expression from the ARSK1 promoter were directed by the control CaMV 35S promoter. The truncated version of the EIR1 promoter (1.2 Kb) showed some differences in the level of GUS expression compared to the 2.2 Kb promoter. Therefore, this suggests an enhancer element is contained in the 2.2 Kb upstream region that increases transgene expression. The Arabidopsis seed-specific genes ATS1 and ATS3 were selected from the literature based on their seed-specific expression profiles and gene expression confirmed in this study as seed-specific by RT-PCR analysis. The selected promoter regions were analysed using the PlantCARE database in order to identify any putative cis elements. The seed-specific motifs GCN4 and Skn-1 were identified in both promoter regions that are associated with elevated expression levels in the endosperm. Additionaly, the seed-specific RY element and the ABRE were located in the ATS1 promoter. Both promoters were fused to the GUS reporter gene and used to transform Arabidopsis plants. GUS expression from the putative promoters was consitutive in all transgenic Arabidopsis tissue tested. Importantly, the positive control FAE1 seed-specific promoter also directed constitutive GUS expression throughout transgenic Arabidopsis plants. The constitutive nature seen in all of the promoters used in this study was not anticipated. While variations in promoter activity can be caused by a number of influencing factors, the variation in promoter activity observed here would imply a major contributing factor common to all plant expression cassettes tested. All promoter constructs generated in this study were based on the binary vector pCAMBIA2300. This vector contains the plant selection gene (NPTII) under the transcriptional control of the duplicated CaMV 35S promoter. This CaMV 35S promoter contains two enhancer domains that confer strong, constitutive expression of the selection gene and is located immediately upstream of the promoter-GUS fusion. During the course of this project, Yoo et al. (2005) reported that transgene expression is significantly affected when the expression cassette is located on the same T-DNA as the 35S enhancer. It was concluded, the trans-acting effects of the enhancer activate and control transgene expression causing irregular expression patterns. This phenomenon seems the most plausible reason for the constitutive expression profiles observed with the root- and seed-specific promoters assessed in this study. The expression from some promoters can be influenced by their cognate terminator sequences. Therefore, the Arabidopsis ARSK1, EIR1, ATS1 and ATS3 terminator sequences were isolated and incorporated into expression cassettes containing the GUS reporter gene under the control of their cognate promoters. Again, unrestricted GUS activity was displayed throughout transgenic plants transformed with these reporter gene fusions. As previously discussed constitutive GUS expression was most likely due to the trans-acting effect of the upstream CaMV 35S promoter in the selection cassette located on the same T-DNA. The results obtained in this study make it impossible to assess the influence matching terminators with their cognate promoters have on transgene expression profiles. The obvious future direction of research continuing from this study would be to transform pBIN-based promoter-GUS fusions (ie. constructs containing no CaMV 35S promoter driving the plant selection gene) into Arabidopsis in order to determine the true tissue specificity of these promoters and evaluate the effects of their cognate 3’ terminator sequences. Further, promoter truncations based around the cis-elements identified here may assist in determining whether these motifs are in fact involved in the overall activity of the promoter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Closteroviruslike particles, designated as grapevine corky bark-associated virus (GCBaV), were purified from mature leaves and stem phloem tissue of a corky bark-affected grapevine that had indexed negative for other grapevine viruses. Electron microscopy of purified preparations revealed the presence of flexuous rod-shaped viruslike particles that were about 13 nm in diameter and between 1,400 and 2,000 nm long, with a helical pitch of 3.4 nm. In purified preparations, the GCBaV particles degraded within a few weeks, unlike grapevine leafroll associated virus (GLRaV), which was stable for more than 1 mo under the same storage condition. The molecular weight of the coat protein of GCBaV was 24,000. A large dsRNA molecule (about 15.3 kbp), along with lower molecular weight species, was detected in tissues of corky bark-diseased grapevines, but not in healthy grapevines. Polyclonal antisera were produced in rabbits against purified or partially purified virus preparations. In direct enzyme-linked immunosorbent assay (ELISA), antisera to GCBaV did not react to the serologically distinct types (II and III) of the long closteroviruses associated with grapevine leafroll disease and grapevine virus A (GVA), and vice versa. This antiserum also reacted in ELISA with other corky bark-affected grapevines. Our data suggest that closteroviruslike particles, designated as GCBaV, may be the causal agent of corky bark disease. However, definitive proof is still lacking. The inclusion of GCBaV in the group of closteroviruses with citrus tristeza virus is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of body weight regulation implies that a biological mechanism exerts control over energy expenditure and food intake. This is a central tenet of energy homeostasis. However, the source and identity of the controlling mechanism have not been identified, although it is often presumed to be some long-acting signal related to body fat, such as leptin. Using a comprehensive experimental platform, we have investigated the relationship between biological and behavioural variables in two separate studies over a 12-week intervention period in obese adults (total n 92). All variables have been measured objectively and with a similar degree of scientific control and precision, including anthropometric factors, body composition, RMR and accumulative energy consumed at individual meals across the whole day. Results showed that meal size and daily energy intake (EI) were significantly correlated with fat-free mass (FFM, P values ,0·02–0·05) but not with fat mass (FM) or BMI (P values 0·11–0·45) (study 1, n 58). In study 2 (n 34), FFM (but not FM or BMI) predicted meal size and daily EI under two distinct dietary conditions (high-fat and low-fat). These data appear to indicate that, under these circumstances, some signal associated with lean mass (but not FM) exerts a determining effect over self-selected food consumption. This signal may be postulated to interact with a separate class of signals generated by FM. This finding may have implications for investigations of the molecular control of food intake and body weight and for the management of obesity.