994 resultados para Asset structure
Resumo:
1. Ecological data sets often use clustered measurements or use repeated sampling in a longitudinal design. Choosing the correct covariance structure is an important step in the analysis of such data, as the covariance describes the degree of similarity among the repeated observations. 2. Three methods for choosing the covariance are: the Akaike information criterion (AIC), the quasi-information criterion (QIC), and the deviance information criterion (DIC). We compared the methods using a simulation study and using a data set that explored effects of forest fragmentation on avian species richness over 15 years. 3. The overall success was 80.6% for the AIC, 29.4% for the QIC and 81.6% for the DIC. For the forest fragmentation study the AIC and DIC selected the unstructured covariance, whereas the QIC selected the simpler autoregressive covariance. Graphical diagnostics suggested that the unstructured covariance was probably correct. 4. We recommend using DIC for selecting the correct covariance structure.
Resumo:
XML document clustering is essential for many document handling applications such as information storage, retrieval, integration and transformation. An XML clustering algorithm should process both the structural and the content information of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. This paper introduces a novel approach that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The proposed method reduces the high dimensionality of input data by using only the structure-constrained content. The empirical analysis reveals that the proposed method can effectively cluster even very large XML datasets and outperform other existing methods.
Resumo:
The emergent field of practice-led research is a unique research paradigm that situates creative practice as both a driver and outcome of the research process. The exegesis that accompanies the creative practice in higher research degrees remains open to experimentation and discussion around what content should be included, how it should be structured, and its orientations. This paper contributes to this discussion by reporting on a content analysis of a large, local sample of exegeses. We have observed a broad pattern in contents and structure within this sample. Besides the introduction and conclusion, it has three main parts: situating concepts (conceptual definitions and theories), practical contexts (precedents in related practices), and new creations (the creative process, the artifacts produced and their value as research). This model appears to combine earlier approaches to the exegesis, which oscillated between academic objectivity in providing a context for the practice and personal reflection or commentary upon the creative practice. We argue that this hybrid or connective model assumes both orientations and so allows the researcher to effectively frame the practice as a research contribution to a wider field while doing justice to its invested poetics.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
An asset registry arguably forms the core system that needs to be in place before other systems can operate or interoperate. Most systems have rudimentary asset registry functionality that store assets, relationships, or characteristics, and this leads to different asset management systems storing similar sets of data in multiple locations in an organisation. As organisations have been slowly moving their information architecture toward a service-oriented architecture, they have also been consolidating their multiple data stores, to form a “single point of truth”. As part of a strategy to integrate several asset management systems in an Australian railway organisation, a case study for developing a consolidated asset registry was conducted. A decision was made to use the MIMOSA OSA-EAI CRIS data model as well as the OSA-EAI Reference Data in building the platform due to the standard’s relative maturity and completeness. A pilot study of electrical traction equipment was selected, and the data sources feeding into the asset registry were primarily diagrammatic based. This paper presents the pitfalls encountered, approaches taken, and lessons learned during the development of the asset registry.
Resumo:
Technological and societal change, along with organisational and market change (driven by contracting-out and privatisation), are “creating a new generation of infrastructures” [1]. While inter-organisational contractual arrangements can improve maintenance efficiency through consistent and repeatable patterns of action - unanticipated difficulties in implementation can reduce the performance of these arrangements. When faced with unsatisfactory performance of contracting-out arrangements, government organisations may choose to adapt and change these arrangements over time, with the aim of improving performance. This paper enhances our understanding of ‘next generation infrastructures’ by examining adaptation of the organisational arrangements for the maintenance of these assets, in a case study spanning 20 years.
Resumo:
This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.
Resumo:
Traffic safety is a major concern world-wide. It is in both the sociological and economic interests of society that attempts should be made to identify the major and multiple contributory factors to those road crashes. This paper presents a text mining based method to better understand the contextual relationships inherent in road crashes. By examining and analyzing the crash report data in Queensland from year 2004 and year 2005, this paper identifies and reports the major and multiple contributory factors to those crashes. The outcome of this study will support road asset management in reducing road crashes.
Resumo:
The approach to remove green house gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals the formation of dypingite and artinite are possible; thus necessitating a study of such minerals. Two carbonate bearing minerals dypingite and artinite with a hydrotalcite related formulae have been characterised by a combination of infrared and near-infrared spectroscopy. The infrared spectra of both minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030 to 7235 cm-1 and 10490 to 10570 cm-1. Intense (CO3)2- symmetric and antisymmetric stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen bonded to the carbonate anion in the mineral structure. Split NIR bands at around 8675 and 11100 cm-1 indicates that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred.