995 resultados para Asphalt, Permeability, Grading, Voids, Repression model
Resumo:
Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.
Resumo:
Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.
Resumo:
The permeability of the lung is critical in determining the disposition of inhaled drugs and the respiratory epithelium provides the main physical barrier to drug absorption. The 16HBE14o- human bronchial epithelial cell line has been developed recently as a model of the airway epithelium. In this study, the transport of 10 low molecular weight compounds was measured in the 16HBE14o- cell layers, with apical to basolateral (absorptive) apparent permeability coefficients (P(app)) ranging from 0.4 x 10(-6)cms(-1) for Tyr-D-Arg-Phe-Phe-NH(2) to 25.2x10(-6)cms(-1) for metoprolol. Permeability in 16HBE14o- cells was found to correlate with previously reported P(app) in Caco-2 cells and absorption rates in the isolated perfused rat lung (k(a,lung)) and the rat lung in vivo (k(a,in vivo)). Log linear relationships were established between P(app) in 16HBE14o- cells and P(app) in Caco-2 cells (r(2)=0.82), k(a,lung) (r(2)=0.78) and k(a,in vivo) (r(2)=0.68). The findings suggest that permeability in 16HBE14o- cells may be useful to predict the permeability of compounds in the lung, although no advantage of using the organ-specific cell line 16HBE14o- compared to Caco-2 cells was found in this study.
Resumo:
Proteins contain hydrophilic groups, which can bind to water molecules through hydrogen bridges, resulting in water vapour adsorption. An increase in the degree of cross-linking can be a method to improve the cohesiveness force and functional properties of protein-based films. Thus, the objective of this work was to evaluate the effect of chemical treatment of gelatin with formaldehyde and glyoxal on the mechanical properties, water vapour permeability (WVP) and water vapour sorption characteristics of gelatin-based films. Films were produced using gelatin, with and without chemical treatment. The formaldehyde treatments caused a significant increase in the tensile strength and a reduction in the WVP of films. The Guggenheim-Anderson-De Boer and Halsey models could be used to model the sorption isotherms of films. It was observed that an increase in temperature produced a decrease in water sorption, and the chemical modifications did not affect the monolayer moisture content. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Background: Splanchnic artery occlusion shock is caused by increased capillary permeability and cellular injury precipitated by oxygen derived free radicals following ischemia and reperfusion of splanchnic organs. The purpose of this study was to assess the role of several well-known oxygen- derived free radical scavengers in ameliorating or preventing this syndrome. Study design: Anesthetized rats were subjected to periods of occlusion of the visceral arteries and reperfusion. Tocopherol, taurine, selenium or a 'cocktail' of these three agents was injected subcutaneously for 4 consecutive days prior to operation. Mean arterial blood pressure was measured throughout the experimental period. Fluorometry and technetium-99m pyrophosphate counting of the visceral organs were performed as well as a histologic grading system for intestinal viability. Results: Final mean arterial blood pressure associated with the 'cocktail' and selenium groups was 79.1 ± 27.4 mmHg and 83.6 ± 17.8 mmHg, respectively. These values were significantly higher than the control group, 40.8 ± 11.4 mmHg (P < 0.05). Similar patterns of the benefit of selenium in contrast with the other groups were obtained with fluorescein perfusion, radioisotopic activity and histologic analysis. Conclusion: Pretreatment with selenium of splanchnic ischemia and reperfusion in the rat improves mean arterial blood pressure and microcirculatory visceral perfusion. Further analysis of the precise protective mechanism of selenium for reperfusion injury will enable visceral organs to withstand the consequences of increased capillary leakage and oxidant injury.
Resumo:
Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of s^l(n) (n = 2, 3) is presented explicitly. © SISSA/ISAS 2003.
Resumo:
Purpose: Bone maintenance after mandibular reconstruction with autogenous iliac crest may be disappointing due to extensive resorption in the long term. The potential of the guided-bone regeneration (GBR) technique to enhance the healing process in segmental defects lacks comprehensive scientific documentation. This study aimed to investigate the influence of polylactide membrane permeability on the fate of iliac bone graft (BG) used to treat mandibular segmental defects. Materials and Methods: Unilateral 10-mm-wide segmental defects were created through the mandibles of 34 mongrel dogs. All defects were mechanically stabilized, and the animals were divided into 6 treatment groups: control, BG alone, microporous membrane (poly L/DL-lactide 80/20%) (Mi); Mi plus BG; microporous laser-perforated (15 cm2 ratio) membrane (Mip), and Mip plus BG. Calcein fluorochrome was injected intravenously at 3 months, and animal euthanasia was carried out at 6 months postoperatively. Results: Histomorphometry showed that BG protected by Mip was consistently related to larger amounts of bone compared with other groups (P ≤ .0001). No difference was found between defects treated with Mip alone and BG alone. Mi alone rendered the least bone area and reduced the amount of grafted bone to control levels. Data from bone labeling indicated that the bone formation process was incipient in the BG group at 3 months postoperatively regardless of whether or not it was covered by membrane. In contrast, GBR with Mip tended to enhance bone formation activity at 3 months. Conclusions: The use of Mip alone could be a useful alternative to BG. The combination of Mip membrane and BG efficiently delivered increased bone amounts in segmental defects compared with other treatment modalities. © 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
In order to investigate the effect on the aqueous solubility and release rate of sulfamerazine (SMR) as model drug, inclusion complexes with beta-cyclodextrin (beta CD), methyl-beta-cyclodextrin (M beta CD) and hydroxypropyl-beta-cyclodextrin (HP beta CD) and a binary system with meglumine (MEG) were developed. The formation of 1: 1 inclusion complexes of SMR with the CDs and a SMR: MEG binary system in solution and in solid state was revealed by phase solubility studies (PSS), nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis and X-Ray diffractometry (XRD) studies. The CDs solubilization of SMR could be improved by ionization of the drug molecule through pH adjustments. The higher apparent stability constants of SMR:CDs complexes were obtained in pH 2.00, demonstrating that CDs present more affinity for the unionized drug. The best approach for SMR solubility enhancement results from the combination of MEG and pH adjustment, with a 34-fold increment and a S-max of 54.8 mg/ml. The permeability of the drug was reduced due to the presence of beta CD, M beta CD, HP beta CD and MEG when used as solubilizers. The study then suggests interesting applications of CD or MEG complexes for modulating the release rate of SMR through semipermeable membranes.
Resumo:
Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.
Resumo:
VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.
Resumo:
Type 2 diabetes mellitus implies deregulation of multiple metabolic processes, being the maintenance of glycemia one of the most important. Many genes are involved in the deregulation of this particular process. Therefore, the aim of this study was to evaluate gene expression of genes related to type 2 diabetes mellitus, in the liver and pancreas of rats with hyperglycemia induced by high fat diet along with a low single dose of streptozotocin. Ahsg and Ppargc1a genes were studied in liver, whereas Kcnj11 and Slc2a2 genes were analyzed in pancreas. For this purpose, 210-240 g female rats were fed a high fat diet or a control diet for three weeks. At day 14, animals fed with high fat diet were injected with a single low dose of streptozotocin (35 mg/kg) and the control group rats were injected only with the vehicle. Plasmatic glucose, triglycerides and total cholesterol levels were measured at the beginning, day 14 and end of treatment. Body weight was also measured. Once the treatment was complete, rats were appropriately euthanized and then, pancreas and liver were surgically removed and frozen in liquid nitrogen. Total RNA was isolated using TRIzol reagent, treated with DNase land reversely transcribed to cDNA. Gene expression analysis was performed using SYBR Green - Real time PCR and comparative Cq method, using three reference genes. Rats fed with high fat diet and treated with streptozotocin showed higher values of plasmatic glucose (17.09 +/- 0.43 vs. 5.91 +/- 0.29 mmol/L, p < 0.01) and a minor expression of Ppargc1a versus the control group (2-fold less expressed, p < 0.05) in liver. We conclude that repression of Ppargc1a gene may be an important process in the establishment of chronic hyperglycemia, probably through deregulation of hepatic gluconeogenesis. However, further studies need to be performed in order to clarify the role of Ppargc1a deregulation in liver glucose homeostasis.
Resumo:
Objective: The purpose of this study was to investigate the rat skin penetration abilities of two commercially available low-level laser therapy (LLLT) devices during 150 sec of irradiation. Background data: Effective LLLT irradiation typically lasts from 20 sec up to a few minutes, but the LLLT time-profiles for skin penetration of light energy have not yet been investigated. Materials and methods: Sixty-two skin flaps overlaying rat's gastrocnemius muscles were harvested and immediately irradiated with LLLT devices. Irradiation was performed either with a 810 nm, 200mW continuous wave laser, or with a 904 nm, 60mW superpulsed laser, and the amount of penetrating light energy was measured by an optical power meter and registered at seven time points (range, 1-150 sec). Results: With the continuous wave 810nm laser probe in skin contact, the amount of penetrating light energy was stable at similar to 20% (SEM +/- 0.6) of the initial optical output during 150 sec irradiation. However, irradiation with the superpulsed 904 nm, 60mW laser showed a linear increase in penetrating energy from 38% (SEM +/- 1.4) to 58% (SEM +/- 3.5) during 150 sec of exposure. The skin penetration abilities were significantly different (p < 0.01) between the two lasers at all measured time points. Conclusions: LLLT irradiation through rat skin leaves sufficient subdermal light energy to influence pathological processes and tissue repair. The finding that superpulsed 904nm LLLT light energy penetrates 2-3 easier through the rat skin barrier than 810nm continuous wave LLLT, corresponds well with results of LLLT dose analyses in systematic reviews of LLLT in musculoskeletal disorders. This may explain why the differentiation between these laser types has been needed in the clinical dosage recommendations of World Association for Laser Therapy.
Resumo:
Ischemia/reperfusion (I/R) injury remains a major cause of graft dysfunction, which impacts short- and long-term follow-up. Hyperbaric oxygen therapy (HBO), through plasma oxygen transport, has been currently used as an alternative treatment for ischemic tissues. The aim of this study was to analyze the effects of HBO on kidney I/R injury model in rats, in reducing the harmful effect of I/R. The renal I/R model was obtained by occluding bilateral renal pedicles with nontraumatic vascular clamps for 45 minutes, followed by 48 hours of reperfusion. HBO therapy was delivered an hypebaric chamber (2.5 atmospheres absolute). Animals underwent two sessions of 60 minutes each at 6 hours and 20 hours after initiation of reperfusion. Male Wistar rats (n = 38) were randomized into four groups: sham, sham operated rats; Sham+HBO, sham operated rats exposed to HBO; I/R, animals submitted to I/R; and I/R+HBO, I/R rats exposed to HBO. Blood, urine, and kidney tissue were collected for biochemical, histologic, and immunohistochemical analyses. The histopathological evaluation of the ischemic injury used a grading scale of 0 to 4. HBO attenuated renal dysfunction after ischemia characterized by a significant decrease in blood urea nitrogen (BUN), serum creatinine, and proteinuria in the I/R+HBO group compared with I/R alone. In parallel, tubular function was improved resulting in significantly lower fractional excretions of sodium and potassium. Kidney sections from the I/R plus HBO group showed significantly lower acute kidney injury scores compared with the I/R group. HBO treatment significantly diminished proliferative activity in I/R (P < .05). There was no significant difference in macrophage infiltration or hemoxygenase-1 expression. In conclusion, HBO attenuated renal dysfunction in a kidney I/R injury model with a decrease in BUN, serum creatinine, proteinuria, and fractional excretion of sodium and potassium, associated with reduced histological damage.