The higher grading structure of the WKI hierarchy and the two-component short pulse equation


Autoria(s): Franca, G. S.; Gomes, J. F.; Zimerman, Abraham Hirsz
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

20/05/2014

20/05/2014

01/08/2012

Resumo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

A higher grading affine algebraic construction of integrable hierarchies, containing the Wadati-Konno-Ichikawa (WKI) hierarchy as a particular case, is proposed. We show that a two-component generalization of the Schafer-Wayne short pulse equation arises quite naturally from the first negative flow of the WKI hierarchy. Some novel integrable nonautonomous models are also proposed. The conserved charges, both local and nonlocal, are obtained from the Riccati form of the spectral problem. The loop-soliton solutions of the WKI hierarchy are systematically constructed through gauge followed by reciprocal Backlund transformation, establishing the precise connection between the whole WKI and AKNS hierarchies. The connection between the short pulse equation with the sine-Gordon model is extended to a correspondence between the two-component short pulse equation and the Lund-Regge model.

Formato

25

Identificador

http://dx.doi.org/10.1007/JHEP08(2012)120

Journal of High Energy Physics. New York: Springer, n. 8, p. 25, 2012.

1126-6708

http://hdl.handle.net/11449/24058

10.1007/JHEP08(2012)120

WOS:000309883200049

Idioma(s)

eng

Publicador

Springer

Relação

Journal of High Energy Physics

Direitos

closedAccess

Palavras-Chave #Integrable Hierarchies #Solitons Monopoles and Instantons #Integrable Field Theories
Tipo

info:eu-repo/semantics/article