959 resultados para Antisense transcription


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A positive cis-acting DNA element in the near 5'-upstream region of the CYP2B1/B2 genes in rat liver was found to play an important role in the transcription of these genes. An oligonucleotide covering -69 to -98 nt mimicked the gel mobility shift pattern given by the fragment -179 to +29 nt, which was earlier found adequate to confer the regulatory features of this gene. Two major complexes were seen, of which the slower and faster moving complexes became intense under uninduced and Phenobarbitone-induced conditions respectively. Minigene cloned DNA plasmid covering -179 to +181 nt in pUC 19 and Bal 31 mutants derived from this parent were transcribed in whole nuclei and cell free transcription extracts and mutants containing only upto -75 nt of the upstream were poorly transcribed. Transcription extracts from phenobarbitone-injected rat liver nuclei were significantly more active than extracts from uninduced rats in transcribing the minigene constructs. Addition of the oligonucleotide (-69 to -98nt) specifically inhibited the transcription of the minigene construct (-179 to +181 nt) in the cell free transcription system. It is therefore, concluded that the region -69 to -98 nt acts as a positive cis-acting element in the transcription of the CYP2B1/B2 genes and in mediating the inductive effects of phenobarbitone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell proliferation, transcription and metabolism are regulated by complex partly overlapping signaling networks involving proteins in various subcellular compartments. The objective of this study was to increase our knowledge on such regulatory networks and their interrelationships through analysis of MrpL55, Vig, and Mat1 representing three gene products implicated in regulation of cell cycle, transcription, and metabolism. Genome-wide and biochemical in vitro studies have previously revealed MrpL55 as a component of the large subunit of the mitochondrial ribosome and demonstrated a possible role for the protein in cell cycle regulation. Vig has been implicated in heterochromatin formation and identified as a constituent of the RNAi-induced silencing complex (RISC) involved in cell cycle regulation and RNAi-directed transcriptional gene silencing (TGS) coupled to RNA polymerase II (RNAPII) transcription. Mat1 has been characterized as a regulatory subunit of cyclin-dependent kinase 7 (Cdk7) complex phosphorylating and regulating critical targets involved in cell cycle progression, energy metabolism and transcription by RNAPII. The first part of the study explored whether mRpL55 is required for cell viability or involved in a regulation of energy metabolism and cell proliferation. The results revealed a dynamic requirement of the essential Drosophila mRpL55 gene during development and suggested a function of MrpL55 in cell cycle control either at the G1/S or G2/M transition prior to cell differentiation. This first in vivo characterization of a metazoan-specific constituent of the large subunit of mitochondrial ribosome also demonstrated forth compelling evidence of the interconnection of nuclear and mitochondrial genomes as well as complex functions of the evolutionarily young metazoan-specific mitochondrial ribosomal proteins. In studies on the Drosophila RISC complex regulation, it was noted that Vig, a protein involved in heterochromatin formation, unlike other analyzed RISC associated proteins Argonaute2 and R2D2, is dynamically phosphorylated in a dsRNA-independent manner. Vig displays similarity with a known in vivo substrate for protein kinase C (PKC), human chromatin remodeling factor Ki-1/57, and is efficiently phosphorylated by PKC on multiple sites in vitro. These results suggest that function of the RISC complex protein Vig in RNAi-directed TGS and chromatin modification may be regulated through dsRNA-independent phosphorylation by PKC. In the third part of this study the role of Mat1 in regulating RNAPII transcription was investigated using cultured murine immortal fibroblasts with a conditional allele of Mat1. The results demonstrated that phosphorylation of the carboxy-terminal domain (CTD) of the large subunit of RNAPII in the heptapeptide YSPTSPS repeat in Mat-/- cells was over 10-fold reduced on Serine-5 and subsequently on Serine-2. Occupancy of the hypophosphorylated RNAPII in gene bodies was detectably decreased, whereas capping, splicing, histone methylation and mRNA levels were generally not affected. However, a subset of transcripts in absence of Mat1 was repressed and associated with decreased occupancy of RNAPII at promoters as well as defective capping. The results identify the Cdk7-CycH-Mat1 kinase submodule of TFIIH as a stimulatory non-essential regulator of transcriptional elongation and a genespecific essential factor for stable binding of RNAPII at the promoter region and capping. The results of these studies suggest important roles for both MrpL55 and Mat1 in cell cycle progression and their possible interplay at the G2/M stage in undifferentiated cells. The identified function of Mat1 and of TFIIH kinase complex in gene-specific transcriptional repression is challenging for further studies in regard to a possible link to Vig and RISC-mediated transcriptional gene silencing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiosperms represent a huge diversity in floral structures. Thus, they provide an attractive target for comparative developmental genetics studies. Research on flower development has focused on few main model plants, and studies on these species have revealed the importance of transcription factors, such as MADS-box and TCP genes, for regulating the floral form. The MADS-box genes determine floral organ identities, whereas the TCP genes are known to regulate flower shape and the number of floral organs. In this study, I have concentrated on these two gene families and their role in regulating flower development in Gerbera hybrida, a species belonging to the large sunflower family (Asteraceae). The Gerbera inflorescence is comprised of hundreds of tightly clustered flowers that differ in their size, shape and function according to their position in the inflorescence. The presence of distinct flower types tells Gerbera apart from the common model species that bear only single kinds of flowers in their inflorescences. The marginally located ray flowers have large bilaterally symmetrical petals and non-functional stamens. The centrally located disc flowers are smaller, have less pronounced bilateral symmetry and carry functional stamens. Early stages of flower development were studied in Gerbera to understand the differentiation of flower types better. After morphological analysis, we compared gene expression between ray and disc flowers to reveal transcriptional differences in flower types. Interestingly, MADS-box genes showed differential expression, suggesting that they might take part in defining flower types by forming flower-type-specific regulatory complexes. Functional analysis of a CYCLOIDEA-like TCP gene GhCYC2 provided evidence that TCP transcription factors are involved in flower type differentiation in Gerbera. The expression of GhCYC2 is ray-flower-specific at early stages of development and activated only later in disc flowers. Overexpression of GhCYC2 in transgenic Gerbera-lines causes disc flowers to obtain ray-flower-like characters, such as elongated petals and disrupted stamen development. The expression pattern and transgenic phenotypes further suggest that GhCYC2 may shape ray flowers by promoting organ fusion. Cooperation of GhCYC2 with other Gerbera CYC-like TCP genes is most likely needed for proper flower type specification, and by this means for shaping the elaborate inflorescence structure. Gerbera flower development was also approached by characterizing B class MADS-box genes, which in the main model plants are known regulators of petal and stamen identity. The four Gerbera B class genes were phylogenetically grouped into three clades; GGLO1 into the PI/GLO clade, GDEF2 and GDEF3 into the euAP3 clade and GDEF1 into the TM6 clade. Putative orthologs for GDEF2 and GDEF3 were identified in other Asteraceae species, which suggests that they appeared through an Asteraceae-specific duplication. Functional analyses indicated that GGLO1 and GDEF2 perform conventional B-function as they determine petal and stamen identities. Our studies on GDEF1 represent the first functional analysis of a TM6-like gene outside the Solanaceae lineage and provide further evidence for the role of TM6 clade members in specifying stamen development. Overall, the Gerbera B class genes showed both commonalities and diversifications with the conventional B-function described in the main model plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic cell nucleoplasm is separated from the cytoplasm by the nuclear envelope. This compartmentation of eukaryotic cells requires that all nuclear proteins must be transported from the cytoplasm into the nucleus. Transport of macromolecules between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs). Proteins to be targeted into the nucleus by the classical nuclear import system contain nuclear localization signals (NLSs), which are recognized by importin alpha, the NLS receptor. Importin alpha binds to importin beta, which docks the importin-cargo complex on the cytoplasmic side of the NPC and mediates the movement of the complex into the nucleus. Presently six human importin alpha isoforms have been identified. Transcription factors are among the most important regulators of gene expression in eukaryotic organisms. Transcription factors bind to specific DNA sequences on target genes and modulate the activity of the target gene. Many transcription factors, including signal transducers and activators of transcription (STAT) and nuclear factor kB (NF-kB), reside in the cytoplasm in an inactive form, and upon activation they are rapidly transported into the nucleus. In the nucleus STATs and NF-kB regulate the activity of genes whose products are critical in controlling numerous cellular and organismal processes, such as inflammatory and immune responses, cell growth, differentiation and survival. The aim of this study was to investigate the nuclear import mechanisms of STAT and NF-kB transcription factors. This work shows that STAT1 homodimers and STAT1/STAT2 heterodimers bind specifically and directly to importin alpha5 molecule via unconventional dimer-specific NLSs. Importin alpha molecules have two regions, which have been shown to directly interact with the amino acids in the NLS of the cargo molecule. The Arm repeats 2-4 comprise the N-terminal NLS binding site and Arm repeats 7-8 the C-terminal NLS binding site. In this work it is shown that the binding site for STAT1 homodimers and STAT1/STAT2 heterodimers is composed of Arm repeats 8 and 9 of importin alpha5 molecule. This work demonstrates that all NF-kB proteins are transported into the nucleus by importin alpha molecules. In addition, NLS was identified in RelB protein. The interactions between NF-kB proteins and importin alpha molecules were found to be directly mediated by the NLSs of NF-kB proteins. Moreover, we found that p50 binds to the N-terminal and p65 to the C-terminal NLS binding site of importin alpha3. The results from this thesis work identify previously uncharacterized mechanisms in nuclear import of STAT and NF-kB. These findings provide new insights into the molecular mechanisms regulating the signalling cascades of these important transcription factors from the cytoplasm into the nucleus to the target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purified rinderpest virus was earlier shown to transcribe in vitro, all virus-specific mRNAs with the promoter-proximal N mRNA being the most abundant. Presently, this transcription system has been shown to synthesize full length monocistronic mRNAs comparable to those made in infected cells. Small quantities of bi- and tricistronic mRNAs are also synthesized. Rinderpest virus synthesizes in vitro, a leader RNA of not, vert, similar 55 nucleotides in length. Purified rinderpest virus also exhibits RNA editing activity during the synthesis of P mRNA as shown by primer extension analysis of the mRNA products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants are capable of recognizing phytopathogens through the perception of pathogen-derived molecules or plant cell-wall degradation products due to the activities of pathogen-secreted enzymes. Such elicitor recognition events trigger an array of inducible defense responses involving signal transduction networks and massive transcriptional re-programming. The outcome of a pathogen infection relies on the balance between different signaling pathways, which are integrated by regulatory proteins. This thesis characterized two key regulatory components: a damage control enzyme, chlorophyllase 1 (AtCHL1), and a transcription factor, WRKY70. Their roles in defense signaling were then investigated. The Erwinia-derived elicitors rapidly activated the expression of AtCLH1 and WRKY70 through different signaling pathways. The expression of the AtCHL1 gene was up-regulated by jasmonic acid (JA) but down-regulated by salicylic acid (SA), whereas WRKY70 was activated by SA and repressed by JA. In order to elucidate the functions of AtCLH1 and WRKY70 in plant defense, stable transgenic lines were produced where these genes were overexpressed or silenced. Additionally, independent knockout lines were also characterized. Bacterial and fungal pathogens were then used to assess the contribution of these genes to the Arabidopsis disease resistance. The transcriptional modulation of AtCLH1 by either the constitutive over-expression or RNAi silencing caused alterations in the chlorophyll-to-chlorophyllide ratio, supporting the claim that chlorophyllase 1 has a role in the chlorophyll degradation pathway. Silencing of this gene led to light-dependent over-accumulation of the reactive oxygen species (ROS) in response to infection by Erwinia carotovora subsp. carotovora SCC1. This was followed by an enhanced induction of SA-dependent defense genes and an increased resistance to this pathogen. Interestingly, little effect on the pathogen-induced SA accumulation at the early infection was observed, suggesting that action of ROS might potentiate SA signaling. In contrast, the pathogen-induced JA production was significantly reduced in the RNAi silenced plants. Moreover, JA signaling and resistance to Alternaria brassicicola were impaired. These observations provide support for the argument that the ROS generated in chloroplasts might have a negative impact on JA signaling. The over-expression of WRKY70 resulted in an enhanced resistance to E. carotovora subsp. carotovora SCC1, Pseudomonas syringae pv. tomato DC3000 and Erysiphe cichoracearum UCSC1, whilst an antisense suppression or an insertional inactivation of WRKY70 led to a compromised resistance to E. carotovora subsp. carotovora SCC1 and to E. cichoracearum UCSC1 but not to P. syringae pv. tomato DC3000. Gene expression analysis revealed that WRKY70 activated many known defense-related genes associated with the SAR response but suppressed a subset of the JA-responsive genes. In particular, I was able to show that both the basal and the induced expression of AtCLH1 was enhanced by the antisense silencing or the insertional inactivation of WRKY70, whereas a reduction in AtCLH1 expression was observed in the WRKY70 over-expressors following an MeJA application or an A. brassicicola infection. Moreover, the SA-induced suppression of AtCLH1 was relieved in wrky70 mutants. These results indicate that WRKY70 down-regulates AtCLH1. An epistasis analysis suggested that WRKY70 functions downstream of the NPR1 in an SA-dependent signaling pathway. When challenged with A. brassicicola, WRKY70 over-expressing plants exhibited a compromised disease resistance while wrky70 mutants had the opposite effect. These results confirmed the WRKY70-mediated inhibitory effects on JA signaling. Furthermore, the WRKY70-controlled suppression of A. brassicicola resistance was mainly through an NPR1-dependent mechanism. Taking all the data together, I suggest that the pathogen-responsive transcription factor WRKY70 is a common component in both SA- and JA-dependent pathways and plays a crucial role in the SA-mediated suppression of JA signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian gastrointestinal tract and liver are self-renewing organs that are able to sustain themselves due to stem cells present in their tissues. In constant, inflammation-related epithelial damage, vigorous activation of stem cells may lead to their uncontrolled proliferation, and further, to cancer. GATA-4, GATA-5, and GATA-6 regulate cell proliferation and differentiation in many mammalian organs. Lack of GATA-4 or GATA-6 leads to defective endodermal development and cell differentiation. GATA-4 and GATA-5 are considered the ones with tumor suppressive functions, whereas GATA-6 is more related to tumor promotion. In the digestive system their roles in inflammation and tumor-related molecular pathways remain unclear. In this study, we examined the GATA-related molecular pathways involved in normal tissue organization and renewal and in inflammation-related epithelial repair in the gastrointestinal tract and liver. The overall purpose of this study was to elucidate the relation of GATA factors to gastrointestinal and hepatic disease pathology and to evaluate their possible clinical significance in tumor biology. The results indicated distinct expression patterns for GATA-4, GATA-5, and GATA-6 in the human and murine gastrointestinal tract and liver, and their involvement in the regulation of intestine-specific genes. GATA-5 was confined to the intestines of suckling mice, suggesting an association with postnatal enzymatic changes. GATA-4 was upregulated in bowel inflammation concomitantly with TGF-β signaling. In gastrointestinal tumors, GATA-4 was restricted to benign neoplasias of the stomach, while GATA-6 was detected especially at the invasive edges of malignant tumors throughout the gut. In the liver, GATA-4 was upregulated in pediatric tumors along with erythropoietin (Epo), which was detected also in the sera of tumor patients. Furthermore, GATA-4 was enhanced in areas of vigorous hepatic regeneration in patients with tyrosinemia type I. These results suggest a central role for GATA-4 in pediatric tumor biology of the liver. To conclude, GATA-4, GATA-5, and GATA-6 are associated with normal gastrointestinal and hepatic development and regeneration. The appearance of GATA-4 along with TGF-β-signaling in the inflammatory bowel suggests a protective role in the response to inflammation-related epithelial destruction. However, in extremely malignant pediatric liver tumors, GATA-4 function is unlikely to be tumor-suppressing, probably due to the nature of the very primitive multipotent tumor cells. GATA-4, along with its possible downstream factor Epo, could be utilized as novel hepatic tumor markers to supplement the present diagnostics. They could also serve a function in future biological therapies for aggressive pediatric tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoprotein P of paramyxoviruses is known to play more than one role in genome transcription and replication. Phosphorylation of P at the NH2 terminus by cellular casein kinase II has been shown to be necessary for transcription of the genome in some of the viruses, while it is dispensable for replication. The phosphorylation null mutant of rinderpest virus P protein, in which three serine residues have been mutated, has been shown earlier to be non-functional in an in vivo minigenome replication/transcription system. In this work, we have shown that the phosphorylation of P protein is essential for transcription, whereas the null mutant is active in replication of the genome in vivo. The null mutant P acts as a transdominant repressor of transcriptional activity of wild-type P and as an activator of replication carried out by wild-type P protein. These results suggest the phosphorylation status of P may act as a replication switch during virus replication. We also show that the phosphorylation null mutant P is capable of interacting with L and N proteins and is able to form a tripartite complex of L-(N-P) when expressed in insect cells, similar to wild-type P protein.