972 resultados para Animal bone healing models
Resumo:
Objectives: To evaluate the influence on osseointegration of Deproteinized bovine bone mineral (DBBM) particles used to fill defects of at least 1 mm around implants having no primary contact with bone. Material and methods: Premolars and first molars were extracted bilaterally from the mandible of six Labrador dogs. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated, and one recipient site was prepared in the molar region of each hemi-mandible to place implants. These were installed with a deliberate circumferential and periapical space to the bone walls of 1.2 mm. All implants were stabilized with passive fixation plates to maintain the implants in situ and without any contact with the implant bed. The control sites were left to be filled with coagulum, while at the test sites, the residual gap was filled with DBBM. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically. Results: Mineralized bone-to-implant contact was 4.0% and 3.9% for control and test sites, respectively. The width of the residual defects was 0.48 mm and 0.88 mm at the control and test sites, respectively. The percentage of implant surface covered by a layer of dense connective tissue of 0.12 mm of width on average was 84.9% and 88.5% at the control and test sites, respectively. Conclusion: A minor and not predictable degree of contact or distance osteogenesis was obtained on the implant surface when primary contact of the implant surface with the implant bed had deliberately been avoided. DBBM grafting of the artificial gap did not favor osseointegration. Neither did it enhance the ability to bridge the gap with newly formed bone in an artificial defect wider than 1 mm. © 2013 John Wiley & Sons A/S.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
AimTo describe the sequential healing of open extraction sockets at which no attempts to obtain a primary closure of the coronal access to the alveolus have been made.Material and methodsThe third mandibular premolar was extracted bilaterally in 12 monkeys, and no sutures were applied to close the wound. The healing after 4, 10, 20, 30, 90 and 180days was morphometrically studied.ResultsAfter 4days of healing, a blood clot mainly occupied the extraction sockets, with the presence of an inflammatory cells' infiltrate. A void was confined in the central zones of the coronal and middle regions, in continuity with the entrance of the alveoli. At 10days, the alveolus was occupied by a provisional matrix, with new bone formation lining the socket bony walls. At 20days, the amount of woven bone was sensibly increasing. At 30days, the alveolar socket was mainly occupied by mineralized immature bone at different stages of healing. At 90 and 180days, the amount of mineralized bone decreased and substituted by trabecular bone and bone marrow. Bundle bone decreased from 95.5% at 4days to 7.6% at 180days, of the whole length of the inner alveolar surface.ConclusionsModeling processes start from the lateral and apical walls of the alveolus, leading to the closure of the socket with newly formed bone within a month from extraction. Remodeling processes will follow the previous stages, resulting in trabecular and bone marrow formation and in a corticalization of the socket access.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To evaluate the influence of different insertion torques on healing of implants loaded immediately or left unloaded.Material and methods: In six Labrador dogs, all mandibular premolars and molars were extracted. After 4 months of healing, flaps were elevated, and two implant sites were prepared at each side of the mandible. The distal sites were prepared conventionally while the mesial sites were underprepared by 0.3 mm. As a consequence, different final insertion torques of about 30 Ncm at the distal and >70 Ncm at the mesial sites were recorded. Healing abutments were applied to the left and transmucosal abutments to the right side. Flaps were sutured, crown preparation of the upper right second and third premolars was performed, and impressions were taken. Within 24 h, crowns were cemented both to implants and teeth in the right side of the mouth. After 4 months, the animals were sacrificed and ground sections obtained for histological evaluation.Results: A higher buccal bony crestal resorption and a more apical position of the coronal level of osseointegration were found at the loaded compared with the unloaded sites. MBIC% and percentages of peri-implant mineralized tissue (MB%) were higher at the loaded compared with the unloaded sites. Moreover, a higher MBIC% was found at the lower compared with the higher final insertion torque.Conclusions: Immediate loading does not seem to have a negative effect on osseointegration. High torque values for the immediate loading procedures were not necessary. Probably, low torque values, were sufficient to obtain primary stability and hence may provide better osseointegration than high torque value.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
ObjectiveTo compare peri-implant tissue healing at implants installed in sites prepared with conventional drills or a sonic device.Material and methodsIn six Beagle dogs, the mandibular premolars and first molars were extracted bilaterally. After 3 months, full-thickness muco-periosteal flaps were elevated and recipient sites were prepared in both sides of the mandible. In the right side (control), the osteotomies were prepared using conventional drills, while, at the left side (test), a sonic device (Sonosurgery((R))) was used. Two implants were installed in each side of the mandible. After 8weeks of non-submerged healing, biopsies were harvested and ground sections prepared for histological evaluation.ResultsThe time consumed for the osteotomies at the test was more than double compared to the conventional control sites. No statistically significant differences were found for any of the histological variables evaluated for hard and soft tissue dimensions. Although not statistically significant, slightly higher mineralized bone-to-implant contact was found at the test (65.4%) compared to the control (58.1) sites.ConclusionsSimilar healing characteristics in osseointegration and marginal hard tissue remodeling resulted at implants installed into osteotomies prepared with conventional drills or with the sonic instrument (Sonosurgery((R))).
Resumo:
ObjectiveTo study bone healing at implants installed with different insertion torques.Material and methodsIn six Labrador dogs, all mandibular premolars and first molars were extracted. After 4months of healing, flaps were elevated, and two implant sites were prepared at each side of the mandible. In the right side of the mandible, the distal sites were prepared conventionally, while the mesial sites were over-prepared by 0.2mm. As a consequence, a final insertion torque of similar to 30Ncm at the distal and a minimal insertion torque close to 0Ncm at the mesial sites were obtained. In the left sides of the mandible, however, the recipient sites were underprepared by 0.3mm resulting in an insertion torque of 70Ncm at both implants. Cover screws were applied, and flaps sutured to fully submerge the experimental sites. After 4months, the animals were sacrificed and ground sections obtained for histological evaluation.ResultsThe mineralized bone-to-implant contact was in the range of 55.2-62.1%, displaying the highest value at implants with similar to 30Ncm insertion torque and the lowest value at the implant sites with close to 0Ncm insertion torque. No statistically significant differences were revealed. Bone density was in the range of 43.4-54.9%, yielding the highest value at implants with 70Ncm insertion torque and the lowest at the implant sites with close to 0Ncm insertion torque. The difference between the sites of similar to 30Ncm and the corresponding 70Ncm insertion torque reached statistical significance.ConclusionsSimilar amounts of osseointegration were obtained irrespective of the insertion torque applied. Moreover, implants installed in sites with close to 0Ncm insertion torque may properly osseointegrate as well.
Resumo:
AimThe aim of this study was to evaluate the healing of autologous bone block grafts or deproteinized bovine bone mineral (DBBM) block grafts applied concomitantly with collagen membranes for horizontal alveolar ridge augmentation.Material and methodsIn six Labrador dogs, molars were extracted bilaterally, the buccal bony wall was removed, and a buccal box-shaped defect created. After 3months, a bony block graft was harvested from the right ascending ramus of the mandible and reduced to a standardized size. A DBBM block was tailored to similar dimensions. The two blocks were secured with screws onto the buccal wall of the defects in the right and left sides of the mandible, respectively. Resorbable membranes were applied at both sides, and the flaps sutured. After 3months, one implant was installed in each side of the mandible, in the interface between grafts and parent bone. After 3months, biopsies were harvested and ground sections prepared to reveal a 6-month healing period of the grafts.Results776.2% and 5.9 +/- 7.5% of vital mineralized bone were found at the autologous bone and DBBM block graft sites, respectively. Moreover, at the DBBM site, 63 +/- 11.7% of connective tissue and 31 +/- 15.5% of DBBM occupied the area analyzed. Only 0.2 +/- 0.4% of DBBM was found in contact with newly formed bone. The horizontal loss was in a mean range of 0.9-1.8mm, and 0.3-0.8mm, at the autologous bone and DBBM block graft sites, respectively.ConclusionsAutologous bone grafts were vital and integrated to the parent bone after 6months of healing. In contrast, DBBM grafts were embedded into connective tissue, and only a limited amount of bone was found inside the scaffold of the biomaterial.
Resumo:
The purpose of this paper was to evaluate the expression of RANK protein during bone-healing process around machined surface implants. Twenty male Wistar rats, 90 days old, after having had a 2 mm diameter and 6 mm long implant inserted in their right tibias, were evaluated at 7, 14, 21, and 42 days after healing. After obtaining the histological samples, slides were subjected to RANK immunostaining reaction. Results were quantitatively evaluated. Results. Immunolabeling analysis showed expressions of RANK in osteoclast and osteoblast lineage cells. The statistical analysis showed an increase in the expression of RANK in osteoblasts at 7 postoperative days and a gradual decrease during the chronology of the healing process demonstrated by mild cellular activity in the final stage (P < .05). Conclusion. RANK immunolabeling was observed especially in osteoclast and osteoblast cells in primary bone during the initial periods of bone-healing/implant interface.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the peri-implant soft and hard tissue adaptation at implants with different modified surfaces and configurations. Six Beagle dogs were used. Mandibular premolars and first molars were extracted bilaterally. After 3 months, full-thickness flaps were elevated, and two different types of trans-mucosal implants (ICX-Gold®, Medentis Medical GmbH, Dernau, Germany and SLActive®, Institute Straumann, Bern, Switzerland) and two different surfaces were randomly installed in the distal regions of one side of the mandible. Abutments were applied, and a nonsubmerged healing was allowed. After 1 month, the procedures were performed in the other side of the mandible, and after a further month, the animals were sacrificed, biopsies were collected, and ground sections prepared for histological examination. Similar results in marginal bone and soft tissues dimensions were observed after 1 month of healing at the two implant systems used, and no major changes could be observed after 2 months of healing. After 1 month, the percentage of new bone was 69.0% and 68.8% at ICX-Gold and SLActive surfaces, respectively. After 2 months, the percentage of new bone was 67.8% and 71.9% at ICX-Gold Medentis and SLActive surfaces, respectively. No statistically significant differences in osseointegration were found. The two implant systems used resulted in similar osseointegration after 1 and 2 months of healing.
Resumo:
Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent differentiation along the osteo-chondrogenic pathway. These results indicate that BMP2 will be among the signaling molecules whose presence will determine success or failure of new bone graft strategies.