838 resultados para Animal attacks
Resumo:
While formal definitions and security proofs are well established in some fields like cryptography and steganography, they are not as evident in digital watermarking research. A systematic development of watermarking schemes is desirable, but at present their development is usually informal, ad hoc, and omits the complete realization of application scenarios. This practice not only hinders the choice and use of a suitable scheme for a watermarking application, but also leads to debate about the state-of-the-art for different watermarking applications. With a view to the systematic development of watermarking schemes, we present a formal generic model for digital image watermarking. Considering possible inputs, outputs, and component functions, the initial construction of a basic watermarking model is developed further to incorporate the use of keys. On the basis of our proposed model, fundamental watermarking properties are defined and their importance exemplified for different image applications. We also define a set of possible attacks using our model showing different winning scenarios depending on the adversary capabilities. It is envisaged that with a proper consideration of watermarking properties and adversary actions in different image applications, use of the proposed model would allow a unified treatment of all practically meaningful variants of watermarking schemes.
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
Compression is desirable for network applications as it saves bandwidth; however, when data is compressed before being encrypted, the amount of compression leaks information about the amount of redundancy in the plaintext. This side channel has led to successful CRIME and BREACH attacks on web traffic protected by the Transport Layer Security (TLS) protocol. The general guidance in light of these attacks has been to disable compression, preserving confidentiality but sacrificing bandwidth. In this paper, we examine two techniques - heuristic separation of secrets and fixed-dictionary compression|for enabling compression while protecting high-value secrets, such as cookies, from attack. We model the security offered by these techniques and report on the amount of compressibility that they can achieve.
Resumo:
The Distributed Network Protocol v3.0 (DNP3) is one of the most widely used protocols, to control national infrastructure. Widely used interactive packet manipulation tools, such as Scapy, have not yet been augmented to parse and create DNP3 frames (Biondi 2014). In this paper we extend Scapy to include DNP3, thus allowing us to perform attacks on DNP3 in real-time. Our contribution builds on East et al. (2009), who proposed a range of possible attacks on DNP3. We implement several of these attacks to validate our DNP3 extension to Scapy, then executed the attacks on real world equipment. We present our results, showing that many of these theoretical attacks would be unsuccessful in an Ethernet-based network.
Resumo:
Recently Gao et al. proposed a lightweight RFID mutual authentication protocol [3] to resist against intermittent position trace attacks and desynchronization attacks and called it RIPTA-DA. They also verified their protocol’s security by data reduction method with the learning parity with noise (LPN) and also formally verified the functionality of the proposed scheme by Colored Petri Nets. In this paper, we investigate RIPTA-DA’s security. We present an efficient secret disclosure attack against the protocol which can be used to mount both de-synchronization and traceability attacks against the protocol. Thus our attacks show that RIPTA-DA protocol is not a RIPTA-DA.
Resumo:
Acupuncture has been reported to be beneficial in treating cognitive impairment in various pathological conditions. This review describes the effort to understand the signaling pathways that underlie the acupunctural therapeutic effect on cognitive function. We searched the literature in 12 electronic databases from their inception to November 2013, with full text available and language limited to English. Twenty-three studies were identified under the selection criteria. All recruited animal studies demonstrate a significant positive effect of acupuncture on cognitive impairment. Findings suggest acupuncture may improve cognitive function through modulation of signaling pathways involved in neuronal survival and function, specifically, through promoting cholinergic neural transmission, facilitating dopaminergic synaptic transmission, enhancing neurotrophin signaling, suppressing oxidative stress, attenuating apoptosis, regulating glycometabolic enzymes and reducing microglial activation. However, the quality of reviewed studies has room for improvement. Further high-quality animal studies with randomization, blinding and estimation of sample size are needed to strengthen the recognition of group differences.
Resumo:
Objective This review aims to summarize the importance of animal models for research on psychiatric illnesses, particularly schizophrenia. Method and Results Several aspects of animal models are addressed, including animal experimentation ethics and theoretical considerations of different aspects of validity of animal models. A more specific discussion is included on two of the most widely used behavioural models, psychotropic drug-induced locomotor hyperactivity and prepulse inhibition, followed by comments on the difficulty of modelling negative symptoms of schizophrenia. Furthermore, we emphasize the impact of new developments in molecular biology and the generation of genetically modified mice, which have generated the concept of behavioural phenotyping. Conclusions Complex psychiatric illnesses, such as schizophrenia, cannot be exactly reproduced in species such as rats and mice. Nevertheless, by providing new information on the role of neurotransmitter systems and genes in behavioural function, animal 'models' can be an important tool in unravelling mechanisms involved in the symptoms and development of such illnesses, alongside approaches such as post-mortem studies, cognitive and psychophysiological studies, imaging and epidemiology.
Resumo:
Epidemiological studies have shown increased incidence of schizophrenia in patients subjected to different forms of pre- or perinatal stress. However, as the onset of schizophrenic illness does not usually occur until adolescence or early adulthood, it is not yet fully understood how disruption of early brain development may ultimately lead to malfunction years later. In order to elucidate a possible role for neurodevelopmental factors in the pathogenesis of schizophrenia and to highlight potential new treatments, animal models are needed. Prepulse inhibition (PPI) is a model of sensorimotor gating mechanisms in the brain. It is disrupted in schizophrenia patients and the disruption can be reversed with atypical antipsychotics. It has been widely used in animal studies to explore central mechanisms possibly involved in schizophrenia. There has been a recent surge of behavioural and neurochemical animal studies on neurodevelopmental models, particularly on the effects of postweaning isolation, maternal separation and neonatal lesions of the hippocampus. In these models, long lasting alterations in behaviour and/or molecular changes in specific brain regions are observed, comparable to those seen in schizophrenia. The aim of this article is to critically review the available literature on such neurodevelopmental animal models with special focus on the effects on PPI and brain regions that are putatively involved in regulation of PPI.
Resumo:
This thesis has made a significant contribution to future chlamydial research by uncovering the chlamydial pathogenic mechanisms which will potentially help in the development of targeted vaccine against the pathogen. This thesis has made important new contributions to our understanding of Chlamydia pneumoniae specific adaptations to stress responses and has provided new perspectives on the survival of this successful pathogen. This thesis has used two well established microbial stressors and has identified major differences in stress responses between human and animal Chlamydia pneumoniae isolates.
Resumo:
This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.
Resumo:
An intrinsic challenge associated with evaluating proposed techniques for detecting Distributed Denial-of-Service (DDoS) attacks and distinguishing them from Flash Events (FEs) is the extreme scarcity of publicly available real-word traffic traces. Those available are either heavily anonymised or too old to accurately reflect the current trends in DDoS attacks and FEs. This paper proposes a traffic generation and testbed framework for synthetically generating different types of realistic DDoS attacks, FEs and other benign traffic traces, and monitoring their effects on the target. Using only modest hardware resources, the proposed framework, consisting of a customised software traffic generator, ‘Botloader’, is capable of generating a configurable mix of two-way traffic, for emulating either large-scale DDoS attacks, FEs or benign traffic traces that are experimentally reproducible. Botloader uses IP-aliasing, a well-known technique available on most computing platforms, to create thousands of interactive UDP/TCP endpoints on a single computer, each bound to a unique IP-address, to emulate large numbers of simultaneous attackers or benign clients.