968 resultados para Anhydrous ethanol
Resumo:
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (P1, Z = 1) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc, Natl, Acad. Sci. USA 83, 9284-9288). The monoclinic form (P2(1), Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal system, but small changes in conformational angles are associated with a shift of the helix from a predominantly alpha-type to a predominantly 3(10)-type. The r.m.s. deviation of 33 atoms in the backbone and C beta positions of residues 2-8 is only 0.29 A between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P2(1) cell, a = 9.422(2) A, b = 36.392(11) A, c = 10.548(2) A, beta = 111.31(2) degrees and V = 3369.3 A for 2 molecules of C60H97N11O13 per cell.
Resumo:
The widespread deployment of commercial-scale cellulosic ethanol currently hinges on developing and evaluating scalable processes whilst broadening feedstock options. This study investigates whole Eucalyptus grandis trees as a potential feedstock and demonstrates dilute acid pre-treatment (with steam explosion) followed by pre-saccharification simultaneous saccharification fermentation process (PSSF) as a suitable, scalable strategy for the production of bioethanol. Biomass was pre-treated in dilute H2SO4 at laboratory scale (0.1 kg) and pilot scale (10 kg) to evaluate the effect of combined severity factor (CSF) on pre-treatment effectiveness. Subsequently, pilot-scale pre-treated residues (15 wt.%) were converted to ethanol in a PSSF process at 2 L and 300 L scales. Good polynomial correlations (n = 2) of CSF with hemicellulose removal and glucan digestibility with a minimum R2 of 0.91 were recorded. The laboratory-scale 72 h glucan digestibility and glucose yield was 68.0% and 51.3%, respectively, from biomass pre-treated at 190 °C /15 min/ 4.8 wt.% H2SO4. Pilot-scale pre-treatment (180 °C/ 15 min/2.4 wt.% H2SO4 followed by steam explosion) delivered higher glucan digestibility (71.8%) and glucose yield (63.6%). However, the ethanol yields using PSSF were calculated at 82.5 and 113 kg/ton of dry biomass for the pilot and the laboratory scales, respectively. © 2016 Society of Chemical Industry and John Wiley & Sons, Ltd
Resumo:
Two new alkali metal borophosphates, K-3[BP(3)o(9)(OH)(3)] and Rb-3[B2P3O11(OH)(2)], were synthesized by applying solvothermal techniques using ethanol as solvent. The crystal structures were solved by means of single-crystal X-ray diffraction (K-3[BP3O9(OH)(3)], monoclinic, C2/c (No. 15), a = 2454.6(8) pm, b = 736.3(2) pm, c = 1406.2(4) pm, beta = 118.35(2)degrees, Z = 8; Rb-3[B2P3O11(OH)(2)], monoclinic, P2(1)/c (No. 14), a = 781.6(2) pm, b:= 667.3(2) pm, c = 2424.8(5) pm, beta = 92.88(1)degrees, Z = 4). Both crystal structures comprise borophosphate chain anions. While for the rubidium compound a loop-branched chain motif is found as common for most of the chain anions in alkali metal borophosphates, the crystal structure of the potassium phase comprises the first open-branched chain with the highest phosphate content found so far in this group of compounds. Both chain anions are Closely related to known anhydrous or hydrated phases, and the structural relations are discussed in terms of how the presence of OH groups and hydrogen bonds as well as number, charge, and size of charge balancing cations influence the 3D structural arrangement. The anionic entities are classified in terms of general principles of structural systematics for borophosphates.
Resumo:
A detailed polarographic (a.c. and d.c.) and coulometric investigation of nitrobenzene has been made at various pH values in the presence of different concentrations of ethanol. Below pH 4.7, two waves are apparent but above this pH, the second wave does not appear. Coulometric evidence indicates that the first and second waves correspond to the four-and two-electron processes, respectively. The coulometric method was not applicable in sodium hydroxide and sodium acetate solutions. When the diffusion coefficients (from the diaphragm cell) are used in the Ilkovic equation, no reliable conclusions can be reached for the number of electrons involved in the reduction process in alkaline solutions. The a.c. polarographic method gives evidence for the formation of species such as: C6H5NO2H22+, C6H5NO2− and C6H5NO22−. Analysis of d.c. polarographic data by Delahay's treatment of irreversible waves, indicates that the number of electrons involved in the rate-determining step is 2. In sodium hydroxide solutions, however, the first main wave is split indicating more than one rate-determining step. The results presented in this paper indicate that the first wave in the reduction of nitrobenzene is a four-electron process at all pH values. The second wave, which appears below pH 4.7, corresponds to a two-electron process irrespective of wave heights. The difference in the a.c. polarographic behaviour in acid and alkaline solutions has given evidence for the formation of species like C6H5NO2H2, C6H5NO2−, and C6H5NO22.
Resumo:
The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.
Resumo:
The green nitrosobenzene monomer is reduced polarographically to phenylhydroxylamine in the pH range 4—9. Though this reduction is known to be a two-electron process, coulometry invariably gives a lower value of n because of the reaction of unreacted nitrosobenzene and the phenylhydroxylamine formed. The green monomer is attacked by mercury in acid medium. In alkaline medium, the green monomer undergoes a change that follows first-order kinetics with respect to nitrosobenzene. The rate of the transformation depends on the solvent. It decreases in the order acetone > ethanol > dioxan.
Resumo:
Graphite particles are exfoliated and subsequently functionalized with toluidine blue. The resulting covalently modified graphite particles are restacked without any binder to form a surface-renewable, bulk-modified electrode. Electrocatalytic oxidation of NADH and its application in the amperometric biosensing of ethanol using alcohol dehydrogenase enzyme have been demonstrated with this material.
Resumo:
The excellent metal support interaction between palladium (Pd) and titanium nitride (TiN) is exploited in designing an efficient anode material. Pd-TN, that could be useful for direct ethanol fuel cell in alkaline media. The physicochemical and electrochemical characterization of the Pd-TiN/electrolyte interface reveals an efficient oxidation of ethanol coupled with excellent stability of the catalyst under electrochemical conditions. Characterization of the interface using in situ Fourier transform infrared spectroscopy (in situ FITR) shows the production CO2 at low overvoltages revealing an efficient cleaving of the C-C bond. The performance comparison of Pd supported on TiN (Pd-TiN) with that supported on carbon (Pd-C) clearly demonstrates the advantages of TiN support over carbon. A positive chemical shift of Pd (3d) binding energy confirms the existence of metal support interaction between pd and TiN, which in turn helps weaken the Pd-CO synergetic bonding interaction. The remarkable ability of TiN to accumulate -OH species on its surface coupled with the strong adhesion of Pd makes TiN an active support material for electrocatalysts.
Resumo:
Sequential addition of vanadyl sulfate to a phosphate-buffered solution of H2O2 released oxygen only after the second batch of vanadyl. Ethanol added to such reaction mixtures progressively decreased oxygen release and increased oxygen consumption during oxidation of vanadyl by H2O2. Inclusion of ethanol after any of the three batches of vanadyl resulted in varying amounts of oxygen consumption, a property also shared by other alcohols (methanol, propanol and octanol). On increasing the concentration of ethanol, vanadyl sulfate or H2O2, both oxygen consumption and acetaldehyde formation increased progressively. Formation of acetaldehyde decreased with increase in the ratio of vanadyl:H2O2 above 2:1 and was undetectable with ethanol at 0.1 mM. The reaction mixture which was acidic in the absence of phosphate buffer (pH 7.0), released oxygen immediately after the first addition of vanadyl and also in presence of ethanol soon after initial rapid consumption of oxygen, with no accompanying acetaldehyde formation. The results underscore the importance of some vanadium complexes formed during vanadyl oxidation in the accompanying oxygen-transfer reactions.
Resumo:
Differently hydrated sodium p-nitrophenolate (NPNa) crystals were obtained while growing them from different solvents such as methanol and water. Thermal analysis and powder X-ray diffraction studies were carried out on these crystals. Kurtz powder SHG technique was used for qualitative assessment of their nonlinear optical (NLO) activity. From the detailed single-crystal X-ray diffraction studies it is established that NPNa has three different forms, of which only one is found to possess NLO activity. Additionally, a new NLO active crystal was also found to grow from aqueous solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Exfoliated graphite (EG) was modified by covalently attaching dopamine (DA) (3,4-dihydroxyphenethylamine) through amide linkages, using -COOH groups introduced on the EG surface. The modified material was characterized by FT-IR spectroscopy, Xray photoelectron spectroscopy and electrochemical techniques. Composites of DA modified EG dispersed in organically modified silicates were prepared by a sol-get process. Electrodes were fabricated by casting the composites in glass tubes. The sol-gel based electrodes were found to be active for the electrocatalytic oxidation of NADH and biosensing of ethanol in presence of NAD(+) and alcohol dehydrogenase enzyme. The modified composite electrodes were found to be stable for several months. The surface of the electrode could be renewed just by mechanically polishing the electrode using emery sheets. The modified EG was also pressed and restacked in the form of a pellet and the use of this material as a binderless bulk-modified electrode was also demonstrated. The performance of sol-gel derived composite EG electrodes with binderless bulk-modified EG electrodes was compared. (C) 2002 Elsevier Science B.V. All rights reserved.