784 resultados para Ancestral
Resumo:
Globally, Indigenous populations, which include Aboriginal and Torres Strait islanders in Australia and Māori people in New Zealand (NZ), have poorer health than their non-Indigenous counterparts. Indigenous peoples worldwide face substantial challenges in poverty, education, employment, housing and disconnection from ancestral lands. While addressing social determinants of health is a priority, solving clinical issues is equally important. Indeed, ignoring the latter until social issues improve risks further disparity as this may take generations. A systematic overview of interventions addressing social determinants of health found a striking lack of reliable evaluations.Where evidence was available, health improvement associated with interventions was modest or uncertain. 10 Thus advances in healthcare remain essential and these require the best evidence available in 11 preventing and managing common illnesses, including respiratory illnesses.
Resumo:
The genus Austronothrus was previously known from three species recorded only from New Zealand. Austronothrus kinabalu sp. nov. is described from Sabah, Borneo and A. rostralis sp. nov. from Norfolk Island, south-west Pacific. A key to Austronothrus is included. These new species extend the distribution of Austronothrus beyond New Zealand and confirms that the subfamily Crotoniinae is not confined to former Gondwanan landmasses. The distribution pattern of Austronothrus spp., combining Oriental and Gondwanan localities, is indicative of a curved, linear track; consistent with the accretion of island arcs and volcanic terranes around the plate margins of the Pacific Ocean, with older taxa persisting on younger island though localised dispersal within island arc metapopulations. Phylogenetic analysis and an area cladogram are consistent with a broad ancestral distribution of Austronothrus in the Oriental region and on Gondwanan terranes, with subsequent divergence and distribution southward from the Sunda region to New Zealand. This pattern is more complex than might be expected if the New Zealand oribatid fauna was derived from dispersal following re-emergence of land after inundation during the Oligocene (25 mya), as well as if the fauna emanated from endemic, relictual taxa following separation of New Zealand from Gondwana during the Cretaceous (80 mya).
Resumo:
Globally, Indigenous populations, which include Aboriginal and Torres Strait islanders in Australia and Māori people in New Zealand (NZ), have poorer health than their non-Indigenous counterparts (1). Indigenous peoples worldwide face substantial challenges in poverty, education, employment, housing, and disconnection from ancestral lands (1). While addressing social determinants of health is a priority, solving clinical issues is equally important. Indeed, ignoring the latter until social issues improve risks further disparity as this may take generations. A systematic overview of interventions addressing social determinants of health found a striking lack of reliable evaluations (2). Where evidence was available, health improvement associated with interventions was modest or uncertain (2). Thus, advances in healthcare remain essential and these require the best evidence available in preventing and managing common illnesses, including respiratory illnesses
Resumo:
Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
Resumo:
The termite genus Coptotermes (Rhinotermitidae) is found in Asia, Africa, Central/South America and Australia, with greatest diversity in Asia. Some Coptotermes species are amongst the world’s most damaging invasive termites, but the genus is also significant for containing the most sophisticated mound-building termites outside the family Termitidae. These mound-building Coptotermes occur only in Australia. Despite its economic and evolutionary significance, the biogeographic history of the genus has not been well investigated, nor has the evolution of the Australian mound-building species. We present here the first phylogeny of the Australian Coptotermes to include representatives from all described species. We combined our new data with previously generated data to estimate the first phylogeny to include representatives from all continents where the genus is found. We also present the first estimation of divergence dates during the evolution of the genus. We found the Australian Coptotermes to be monophyletic and most closely related to the Asian Coptotermes, with considerable genetic diversity in some Australian taxa possibly representing undescribed species. The Australian mound-building species did not form a monophyletic clade. Our ancestral state reconstruction analysis indicated that the ancestral Australian Coptotermes was likely to have been a tree nester, and that mound-building behaviour has arisen multiple times. The Australian Coptotermes were found to have diversified ∼13 million years ago, which plausibly matches with the narrowing of the Arafura Sea allowing Asian taxa to cross into Australia. The first diverging Coptotermes group was found to be African, casting doubt on the previously raised hypothesis that the genus has an Asian origin.
Resumo:
Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.
Resumo:
In the thesis it is discussed in what ways concepts and methodology developed in evolutionary biology can be applied to the explanation and research of language change. The parallel nature of the mechanisms of biological evolution and language change is explored along with the history of the exchange of ideas between these two disciplines. Against this background computational methods developed in evolutionary biology are taken into consideration in terms of their applicability to the study of historical relationships between languages. Different phylogenetic methods are explained in common terminology, avoiding the technical language of statistics. The thesis is on one hand a synthesis of earlier scientific discussion, and on the other an attempt to map out the problems of earlier approaches in addition to finding new guidelines in the study of language change on their basis. Primarily literature about the connections between evolutionary biology and language change, along with research articles describing applications of phylogenetic methods into language change have been used as source material. The thesis starts out by describing the initial development of the disciplines of evolutionary biology and historical linguistics, a process which right from the beginning can be seen to have involved an exchange of ideas concerning the mechanisms of language change and biological evolution. The historical discussion lays the foundation for the handling of the generalised account of selection developed during the recent few decades. This account is aimed for creating a theoretical framework capable of explaining both biological evolution and cultural change as selection processes acting on self-replicating entities. This thesis focusses on the capacity of the generalised account of selection to describe language change as a process of this kind. In biology, the mechanisms of evolution are seen to form populations of genetically related organisms through time. One of the central questions explored in this thesis is whether selection theory makes it possible to picture languages are forming populations of a similar kind, and what a perspective like this can offer to the understanding of language in general. In historical linguistics, the comparative method and other, complementing methods have been traditionally used to study the development of languages from a common ancestral language. Computational, quantitative methods have not become widely used as part of the central methodology of historical linguistics. After the fading of a limited popularity enjoyed by the lexicostatistical method since the 1950s, only in the recent years have also the computational methods of phylogenetic inference used in evolutionary biology been applied to the study of early language history. In this thesis the possibilities offered by the traditional methodology of historical linguistics and the new phylogenetic methods are compared. The methods are approached through the ways in which they have been applied to the Indo-European languages, which is the most thoroughly investigated language family using both the traditional and the phylogenetic methods. The problems of these applications along with the optimal form of the linguistic data used in these methods are explored in the thesis. The mechanisms of biological evolution are seen in the thesis as parallel in a limited sense to the mechanisms of language change, however sufficiently so that the development of a generalised account of selection is deemed as possibly fruiful for understanding language change. These similarities are also seen to support the validity of using phylogenetic methods in the study of language history, although the use of linguistic data and the models of language change employed by these models are seen to await further development.
Resumo:
Recurrent miscarriage (RM) is defined as three consecutive pregnancy failures and is estimated to affect ~1% of couples trying to conceive. The cause of RM remains unknown in approximately 50% of cases. In this study, it was hypothesized that some of the underlying factors yet to be discovered are genetic. The aim was to search for mutations in genes AMN, EPCR, TM, and p53 known to cause miscarriage in mouse models and thereby find new genetic causes for unexplained miscarriages in humans. In addition, the mitochondrial genome was studied because mitochondria are involved in processes important in early development. Furthermore, sex chromosome characteristics suggested to underlie miscarriage were also studied. A total of 40 couples and 8 women with unexplained RM were collected for this study and screened for mutations in the candidate genes. Six interesting exonic or potential splice site disrupting variations were detected. However, their phenotypic effects cannot be determined without further investigations. Additionally, an association between the C11992A polymorphism of the p53 gene and RM was detected. The results indicate that women carrying the C/A or A/A genotype have a two-fold higher risk for RM than women with a C/C genotype. This strengthens the results of previous studies reporting that p53 sequence variations may cause miscarriage. The role of variation C11992A in embryonic development is, however, difficult to predict without further studies When screening the mitochondrial genome a heteroplasmic mtDNA variation was found in an unexpected high number of women, as heteroplasmic variations are reported to be rare. One novel variation and 18 previously reported polymorphisms were detected in the mitochondrial genome. Although the detected variations are likely to be neutral polymorphisms, a role in the aetiology of miscarriage cannot be excluded as some mtDNA variations may be pathogenic only when a threshold is reached. Recent publications have reported skewed X chromosome inactivation and Y chromosome microdeletions to be associated with RM. Therefore, these sex chromosome abnormalities in the context of RM were investigated. No associations between skewed X chromosome inactivation or Y chromosome microdeletions and RM in the Finnish patients were detected. Data on ancestral birthplaces of the patients were collected to study any possible geographic clustering, which would indicate a common predisposing factor. The results showed clustering of the birthplaces in eastern Finland in a subset of patients. This suggests a possibility of an enriched susceptibility gene which may contribute to RM.
Resumo:
The detection and replication of schizophrenia risk loci can require substantial sample sizes, which has prompted various collaborative efforts for combining multiple samples. However, pooled samples may comprise sub-samples with substantial population genetic differences, including allele frequency differences. We investigated the impact of population differences via linkage reanalysis of Molecular Genetics of Schizophrenia 1 (MGS1) affected sibling-pair data, comprising two samples of distinct ancestral origin: European (EA: 263 pedigrees) and African-American (AA: 146 pedigrees). To exploit the linkage information contained within these distinct continental samples, we performed separate analyses of the individual samples, allowing for within-sample locus heterogeneity, and the pooled sample, allowing for both within-sample and between-sample heterogeneity. Significance levels, corrected for the multiple tests, were determined empirically. For all suggestive peaks, stronger linkage evidence was obtained in either the EA or AA sample than the combined sample, regardless of how heterogeneity was modeled for the latter. Notably, we report genomewide significant linkage of schizophrenia to 8p23.3 and evidence for a second, independent susceptibility locus, reaching suggestive linkage, 29 cM away on 8p21.3. We also detected suggestive linkage on chromosomes 5p13.3 and 7q36.2. Many regions showed pronounced differences in the extent of linkage between the EA and AA samples. This reanalysis highlights the potential impact of population differences upon linkage evidence in pooled data and demonstrates a useful approach for the analysis of samples drawn from distinct continental groups.
Resumo:
Memory, time and metaphor are central triggers for artists in exploring and shaping their creative work. This paper examines the place of artists as ‘memory-keepers’, and ‘memory-makers’, in particular through engagement with the time-based art of site-specific performance. Naik Naik (Ascent) was a multi-site performance project in the historic setting of Melaka, Malaysia, and is partially recaptured through the presence and voices of its collaborating artists. Distilled from moments recalled, this paper seeks to uncover the poetics of memory to emerge from the project; one steeped in metaphor rather than narrative. It elicits some of the complex and interdependent layers of experience revealed by the artists in Naik Naik; cultural, ancestral, historical, personal, instinctual and embodied memories connected to sound, smell, touch, sensation and light, in a spatiotemporal context for which site is the catalyst. The liminal nature of memory at the heart of Naik Naik, provides a shared experience of past and present and future, performatively interwoven.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
Metabolism is the cellular subsystem responsible for generation of energy from nutrients and production of building blocks for larger macromolecules. Computational and statistical modeling of metabolism is vital to many disciplines including bioengineering, the study of diseases, drug target identification, and understanding the evolution of metabolism. In this thesis, we propose efficient computational methods for metabolic modeling. The techniques presented are targeted particularly at the analysis of large metabolic models encompassing the whole metabolism of one or several organisms. We concentrate on three major themes of metabolic modeling: metabolic pathway analysis, metabolic reconstruction and the study of evolution of metabolism. In the first part of this thesis, we study metabolic pathway analysis. We propose a novel modeling framework called gapless modeling to study biochemically viable metabolic networks and pathways. In addition, we investigate the utilization of atom-level information on metabolism to improve the quality of pathway analyses. We describe efficient algorithms for discovering both gapless and atom-level metabolic pathways, and conduct experiments with large-scale metabolic networks. The presented gapless approach offers a compromise in terms of complexity and feasibility between the previous graph-theoretic and stoichiometric approaches to metabolic modeling. Gapless pathway analysis shows that microbial metabolic networks are not as robust to random damage as suggested by previous studies. Furthermore the amino acid biosynthesis pathways of the fungal species Trichoderma reesei discovered from atom-level data are shown to closely correspond to those of Saccharomyces cerevisiae. In the second part, we propose computational methods for metabolic reconstruction in the gapless modeling framework. We study the task of reconstructing a metabolic network that does not suffer from connectivity problems. Such problems often limit the usability of reconstructed models, and typically require a significant amount of manual postprocessing. We formulate gapless metabolic reconstruction as an optimization problem and propose an efficient divide-and-conquer strategy to solve it with real-world instances. We also describe computational techniques for solving problems stemming from ambiguities in metabolite naming. These techniques have been implemented in a web-based sofware ReMatch intended for reconstruction of models for 13C metabolic flux analysis. In the third part, we extend our scope from single to multiple metabolic networks and propose an algorithm for inferring gapless metabolic networks of ancestral species from phylogenetic data. Experimenting with 16 fungal species, we show that the method is able to generate results that are easily interpretable and that provide hypotheses about the evolution of metabolism.
Resumo:
Replication and transcription of the RNA genome of alphaviruses relies on a set of virus-encoded nonstructural proteins. They are synthesized as a long polyprotein precursor, P1234, which is cleaved at three processing sites to yield nonstructural proteins nsP1, nsP2, nsP3 and nsP4. All the four proteins function as constitutive components of the membrane-associated viral replicase. Proteolytic processing of P1234 polyprotein is precisely orchestrated and coordinates the replicase assembly and maturation. The specificity of the replicase is also controlled by proteolytic cleavages. The early replicase is composed of P123 polyprotein intermediate and nsP4. It copies the positive sense RNA genome to complementary minus-strand. Production of new plus-strands requires complete processing of the replicase. The papain-like protease residing in nsP2 is responsible for all three cleavages in P1234. This study addressed the mechanisms of proteolytic processing of the replicase polyprotein in two alphaviruses Semliki Forest virus (SFV) and Sindbis virus (SIN) representing different branches of the genus. The survey highlighted the functional relation of the alphavirus nsP2 protease to the papain-like enzymes. A new structural motif the Cys-His catalytic dyad accompanied with an aromatic residue following the catalytic His was described for nsP2 and a subset of other thiol proteases. Such an architecture of the catalytic center was named the glycine specificity motif since it was implicated in recognition of a specific Gly residue in the substrate. In particular, the presence of the motif in nsP2 makes the appearance of this amino acid at the second position upstream of the scissile bond a necessary condition for the cleavage. On top of that, there were four distinct mechanisms identified, which provide affinity for the protease and specifically direct the enzyme to different sites in the P1234 polyprotein. Three factors RNA, the central domain of nsP3 and the N-terminus of nsP2 were demonstrated to be external modulators of the nsP2 protease. Here I suggest that the basal nsP2 protease specificity is inherited from the ancestral papain-like enzyme and employs the recognition of the upstream amino acid signature in the immediate vicinity of the scissile bond. This mechanism is responsible for the efficient processing of the SFV nsP3/nsP4 junction. I propose that the same mechanism is involved in the cleavage of the nsP1/nsP2 junction of both viruses as well. However, in this case it rather serves to position the substrate, whereas the efficiency of the processing is ensured by the capability of nsP2 to cut its own N-terminus in cis. Both types of cleavages are demonstrated here to be inhibited by RNA, which is interpreted as impairing the basal papain-like recognition of the substrate. In contrast, processing of the SIN nsP3/nsP4 junction was found to be activated by RNA and additionally potentiated by the presence of the central region of nsP3 in the protease. The processing of the nsP2/nsP3 junction in both viruses occurred via another mechanism, requiring the exactly processed N-terminus of nsP2 in the protease and insensitive to RNA addition. Therefore, the three processing events in the replicase polyprotein maturation are performed via three distinct mechanisms in each of two studied alphaviruses. Distinct sets of conditions required for each cleavage ensure sequential maturation of P1234 polyprotein: nsP4 is released first, then the nsP1/nsP2 site is cut in cis, and liberation of the nsP2 N-terminus activates the cleavage of the nsP2/nsP3 junction at last. The first processing event occurs differently in SFV and SIN, whereas the subsequent cleavages are found to be similar in the two viruses and therefore, their mechanisms are suggested to be conserved in the genus. The RNA modulation of the alphavirus nonstructural protease activity, discovered here, implies bidirectional functional interplay between the alphavirus RNA metabolism and protease regulation. The nsP2 protease emerges as a signal transmitting moiety, which senses the replication stage and responds with proteolytic cleavages. A detailed hypothetical model of the alphavirus replicase core was inferred from the data obtained in the study. Similar principles in replicase organization and protease functioning are expected to be employed by other RNA viruses.
Resumo:
In this thesis, the genetic variation of human populations from the Baltic Sea region was studied in order to elucidate population history as well as evolutionary adaptation in this region. The study provided novel understanding of how the complex population level processes of migration, genetic drift, and natural selection have shaped genetic variation in North European populations. Results from genome-wide, mitochondrial DNA and Y-chromosomal analyses suggested that the genetic background of the populations of the Baltic Sea region lies predominantly in Continental Europe, which is consistent with earlier studies and archaeological evidence. The late settlement of Fennoscandia after the Ice Age and the subsequent small population size have led to pronounced genetic drift, especially in Finland and Karelia but also in Sweden, evident especially in genome-wide and Y-chromosomal analyses. Consequently, these populations show striking genetic differentiation, as opposed to much more homogeneous pattern of variation in Central European populations. Additionally, the eastern side of the Baltic Sea was observed to have experienced eastern influence in the genome-wide data as well as in mitochondrial DNA and Y-chromosomal variation – consistent with linguistic connections. However, Slavic influence in the Baltic Sea populations appears minor on genetic level. While the genetic diversity of the Finnish population overall was low, genome-wide and Y-chromosomal results showed pronounced regional differences. The genetic distance between Western and Eastern Finland was larger than for many geographically distant population pairs, and provinces also showed genetic differences. This is probably mainly due to the late settlement of Eastern Finland and local isolation, although differences in ancestral migration waves may contribute to this, too. In contrast, mitochondrial DNA and Y-chromosomal analyses of the contemporary Swedish population revealed a much less pronounced population structure and a fusion of the traces of ancient admixture, genetic drift, and recent immigration. Genome-wide datasets also provide a resource for studying the adaptive evolution of human populations. This study revealed tens of loci with strong signs of recent positive selection in Northern Europe. These results provide interesting targets for future research on evolutionary adaptation, and may be important for understanding the background of disease-causing variants in human populations.
Resumo:
Symmetry is a key principle in viral structures, especially the protein capsid shells. However, symmetry mismatches are very common, and often correlate with dynamic functionality of biological significance. The three-dimensional structures of two isometric viruses, bacteriophage phi8 and the archaeal virus SH1 were reconstructed using electron cryo-microscopy. Two image reconstruction methods were used: the classical icosahedral method yielded high resolution models for the symmetrical parts of the structures, and a novel asymmetric in-situ reconstruction method allowed us to resolve the symmetry mismatches at the vertices of the viruses. Evidence was found that the hexameric packaging enzyme at the vertices of phi8 does not rotate relative to the capsid. The large two-fold symmetric spikes of SH1 were found not to be responsible for infectivity. Both virus structures provided insight into the evolution of viruses. Comparison of the phi8 polymerase complex capsid with those of phi6 and other dsRNA viruses suggests that the quaternary structure in dsRNA bacteriophages differs from other dsRNA viruses. SH1 is unusual because there are two major types of capsomers building up the capsid, both of which seem to be composed mainly of single beta-barrels perpendicular to the capsid surface. This indicates that the beta-barrel may be ancestral to the double beta-barrel fold.