986 resultados para Análise modal
Resumo:
Increasing the importance and use of infrastructures such as bridges, demands more effective structural health monitoring (SHM) systems. SHM has well addressed the damage detection issues through several methods such as modal strain energy (MSE). Many of the available MSE methods either have been validated for limited type of structures such as beams or their performance is not satisfactory. Therefore, it requires a further improvement and validation of them for different types of structures. In this study, an MSE method was mathematically improved to precisely quantify the structural damage at an early stage of formation. Initially, the MSE equation was accurately formulated considering the damaged stiffness and then it was used for derivation of a more accurate sensitivity matrix. Verification of the improved method was done through two plane structures: a steel truss bridge and a concrete frame bridge models that demonstrate the framework of a short- and medium-span of bridge samples. Two damage scenarios including single- and multiple-damage were considered to occur in each structure. Then, for each structure, both intact and damaged, modal analysis was performed using STRAND7. Effects of up to 5 per cent noise were also comprised. The simulated mode shapes and natural frequencies derived were then imported to a MATLAB code. The results indicate that the improved method converges fast and performs well in agreement with numerical assumptions with few computational cycles. In presence of some noise level, it performs quite well too. The findings of this study can be numerically extended to 2D infrastructures particularly short- and medium-span bridges to detect the damage and quantify it more accurately. The method is capable of providing a proper SHM that facilitates timely maintenance of bridges to minimise the possible loss of lives and properties.
Resumo:
The ineffectiveness of current design processes has been well studied and has resulted in widespread calls for the evolution and development of new management processes. Perhaps one problem is that with the advent of BIM we are moving from one stage to another without necessarily having resolved all the issues. CAD design technology, if well handled, could have significantly raised the level of quality and efficiency of current processes, but in practice this was not fully realized. Therefore, technology alone can´t solve all the problems and the advent of BIM could result in a similar bottleneck. For a precise definition of the problem to be solved we should start by understanding what are the main current bottlenecks that have yet to be overcome by either new technologies or management processes, and the impact of human behavior related issues despite the advent of new technologies. The fragmented and dispersed nature of the AEC sector and the huge number of small organizations that comprise it would probably be a major limiting factor. Several authors have addressed this issue and more recently IDDS has been defined as the highest level of achievement. However, what is written on IDDS shows an extremely ideal situation on a state to be achieved; it shows a holistic utopian proposition with the intent to create the research agenda to move towards that state. Key to IDDS is the framing of a new management model which should address the problems associated with key aspects: technology, processes, policies and people. One of the primary areas to be further studied is the process of collaborative work and understanding, together with the development of proposals to overcome the many cultural barriers that currently exist and impede the advance of new management methods. The purpose of this paper is to define and delimit problems to be solved so that it is possible to implement a new management model for a collaborative design process.
Resumo:
In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.
Resumo:
The use of Wireless Sensor Networks (WSNs) for vibration-based Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data asynchronicity and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. Based on a brief review, this paper first reveals that Data Synchronization Error (DSE) is the most inherent factor amongst uncertainties of SHM-oriented WSNs. Effects of this factor are then investigated on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when merging data from multiple sensor setups. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as benchmark data after being added with a certain level of noise to account for the higher presence of this factor in SHM-oriented WSNs. From this source, a large number of simulations have been made to generate multiple DSE-corrupted datasets to facilitate statistical analyses. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with DSE at a relaxed level. Finally, the combination of preferred OMA techniques and the use of the channel projection for the time-domain OMA technique to cope with DSE are recommended.
Resumo:
The problem of modal choice between rail and air arises as public awareness of carbon dioxide (CO2) emissions by the transportation sector rises. In this paper, we answer this question quantitatively by performing an efficiency benchmarking analysis that takes into account life-cycle CO2 emission due to transport service provision. The paper employs nonparametric efficiency estimation methods, namely a slacks-based inefficiency measure, as well as a more conventional directional distance function approach. We apply them to a panel data set for three major railway companies and the aviation sector in Japan for the period from 1999 to 2007. Results shows that, contrary to the common argument, air transport can still be more socially efficient than rail transport, even when the environmental load due to CO2 emission is incorporated. This is due to the aviation sector's extremely low user cost, measured in terms of in-vehicle time. In other words, aviation is a necessary transportation mode for those with a very high willingness to pay for their time.
Resumo:
The data-oriented empirical research on the Chinese adverb “ke” has led to the conclusion that the semantics of the word as a modal adverb is always two-fold: it marks both “contrast” and “emphasis”. “Adversativity” as used in literature on “ke” is but one type of contrast marked by “ke”. Other types of contrast marked by “ke” in declarative sentences include: a) what is assumed by the hearer and what the truth of a matter is; b) what the sentence literally talks about and what it also implicitly conveys; and c) the original wishful nature of the stated action and its final realization. In all declarative sentences, what the adverb emphasizes is the “factuality” of what is stated. Chinese Abstract [提要] 对外汉语教学的实践表明,汉语副词“可”是教学中的难点,这跟我们对其语义内涵缺乏全面准确的认识有关。为了全面揭示副词“可”的核心语义,本作者以电视连续剧《渴望》前二十集为主要语料,并结合其他一些电视剧、电视节目以及文献里已有的语料,对出现在各种语境中的“可”进行了大量的考察和归纳性研究。研究结果表明,作为语气副词的“可”其核心语义不是单一的,它总是在标示“对比”(即“不同”)的同时表示强调。它所强调的是所述内容的“事实性”或“终然性”。由于篇幅所限,本文仅对陈述句中的语气副词“可”加以讨论
Resumo:
This text discusses the project for a garden by Gonçalo Ribeiro-Telles that argues for a different possibility of creating a garden as landscape continuum and exploring picturesque as an apparatus to expand the experience of the place
Resumo:
This thesis examines the question why the automotive mode and the large technological system it creates, continues to dominate urban transport systems despite the availability of more cost-efficient alternatives. A number of theoretical insights are developed into the way these losses evolve from path dependent growth, and lead to market failure and lock-in. The important role of asymmetries of influence is highlighted. A survey of commuters in Jakarta Indonesia is used to provide a measure of transport modal lock-in (TML) in a developing country conurbation. A discrete choice experiment is used to provide evidence for the thesis central hypothesis that in such conurbations there is a high level of commuter awareness of the negative externalities generated by TML which can produce a strong level of support for its reversal. Why TML nevertheless remains a strong and durable feature of the transport system is examined with reference to the role of asymmetries of influence.
Resumo:
Non-rigid image registration is an essential tool required for overcoming the inherent local anatomical variations that exist between images acquired from different individuals or atlases. Furthermore, certain applications require this type of registration to operate across images acquired from different imaging modalities. One popular local approach for estimating this registration is a block matching procedure utilising the mutual information criterion. However, previous block matching procedures generate a sparse deformation field containing displacement estimates at uniformly spaced locations. This neglects to make use of the evidence that block matching results are dependent on the amount of local information content. This paper presents a solution to this drawback by proposing the use of a Reversible Jump Markov Chain Monte Carlo statistical procedure to optimally select grid points of interest. Three different methods are then compared to propagate the estimated sparse deformation field to the entire image including a thin-plate spline warp, Gaussian convolution, and a hybrid fluid technique. Results show that non-rigid registration can be improved by using the proposed algorithm to optimally select grid points of interest.
Resumo:
This paper examines the issue of face, speaker and bi-modal authentication in mobile environments when there is significant condition mismatch. We introduce this mismatch by enrolling client models on high quality biometric samples obtained on a laptop computer and authenticating them on lower quality biometric samples acquired with a mobile phone. To perform these experiments we develop three novel authentication protocols for the large publicly available MOBIO database. We evaluate state-of-the-art face, speaker and bi-modal authentication techniques and show that inter-session variability modelling using Gaussian mixture models provides a consistently robust system for face, speaker and bi-modal authentication. It is also shown that multi-algorithm fusion provides a consistent performance improvement for face, speaker and bi-modal authentication. Using this bi-modal multi-algorithm system we derive a state-of-the-art authentication system that obtains a half total error rate of 6.3% and 1.9% for Female and Male trials, respectively.
Resumo:
This paper addresses less recognised factors which influence the diffusion of a particular technology. While an innovation’s attributes and performance are paramount, many fail because of external factors which favour an alternative. This paper, with theoretic input from diffusion, lock-in and path-dependency, presents a qualitative study of external factors that influenced the evolution of transportation in USA. This historical account reveals how one technology and its emergent systems become dominant while other choices are overridden by socio-political, economic and technological interests which include not just the manufacturing and service industries associated with the automobile but also government and market stakeholders. Termed here as a large socio-economic regime (LSER),its power in ensuring lock-in and continued path-dependency is shown to pass through three stages, weakening eventually as awareness improves. The study extends to transport trends in China, Korea, Indonesia and Malaysia and they all show the dominant role of an LSER. As transportation policy is increasingly accountable to address both demand and environmental concerns and innovators search for solutions, this paper presents important knowledge for innovators, marketers and policy makers for commercial and societal reasons, especially when negative externalities associated with an incumbent transportation technology may lead to market failure.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.