999 resultados para Amorphous-Alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cu-Zr amorphous alloy was studied as an electrocatalyst towards the electrochemical hydrogenation of nitrobenzene. The electrocatalyst was activated by chemical etching in HF solution. Resulted changes in the morphology, chemical composition and crystalline structure of the electrocatalyst surface were characterised by scanning electron microscopy, X-ray diffraction and Auger electron spectroscopy. The electrocatalytic properties of the Cu-Zr amorphous alloy were assessed by voltammetric measurements. Due to the formation and aggregation of Zr residue modified Cu nanocrystals on the surface caused by the selective dissolution of Zr components in the chemical etching, the activated amorphous alloy is an effective electrocatalyst for the electrochemical reduction reaction of nitrobenzene with aniline as the main product. The positive shift of the peak potential and accompanying increase in the value of peak current in voltammograms with increasing Cu content and decreasing Zr content of the alloy surface in the chemical etching are indicative of improved electrocatalytic activity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti45Zr30Ni25Yx (x = 1, 3, 5 and 7) alloys were prepared by melt-spinning at wheel velocity of 20 m s(-1). The effect of additive Y on phase structure and electrochemical performance of melt-spun alloys was investigated. Ti45Zr30Ni25Yx melt-spun alloys were composed of I-phase and amorphous phase. T

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For (Ti1-xVx)(2)Ni (x = 0.05,0.1,0.15,0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti44Zr32Ni22Cu2 and Ti41Zr29Ni28Cu2 alloys were prepared by the melt-spinning method. The phase structure was analyzed by X-ray diffraction, and the electrochemical performances of the melt-spun alloys were investigated. The results indicated that the Ti44Zr32Ni22Cu2 alloy was composed of the icosahedral quasicrystals and amorphous phases, and the Ti41Zr29Ni28Cu2 alloy comprised icosahedral quasicrystals, amorphous, and Laves phases. The maximum discharge capacity was 141 mAh/g for the Ti44Zr32Ni22Cu2 alloy and 181 mAh/g for the Ti41Zr29Ni28Cu2 alloy, respectively. The Ti41Zr29Ni28Cu2 alloy also showed a better high-rate dischargeabifity and cycling stability. The better electrochemical properties should be ascribed to the high content of Ni, which was beneficial to the electrochemical kinetic properties and made the alloy more resistant to oxidation, as well as to the Laves phase in the Ti41Zr29Ni28Cu2 alloy, which could work as the electro-catalyst and the micro-current collector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ti45Zr35Ni17Cu3 amorphous and single icosahedral quasicrystalline powders were synthesized by mechanical alloying and subsequent annealing at 855 K. Microstructure and electrochemical properties of two alloy electrodes were characterized. When the temperature was enhanced from 303 to 343 K, the maximum discharge capacities increased from 86 to 329 mAh g(-1) and 76 to 312 mAh g(-1) for the amorphous and quasicrystalline alloy electrodes, respectively. Discharge capacities of two electrodes decrease distinctly with increasing cycle number. The I-phase is stable during charge/discharge cycles, and the main factors for its discharge capacity loss are the increase of the charge-transfer resistance and the pulverization of alloy particles. Besides the factors mentioned above, the formation of TiH2 and ZrH2 hydrides is another primary reason for the discharge capacity loss of the amorphous alloy electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of the heat treatment on the corrosion behaviour of amorphous Al88Ni6La6 made by melt-spun has been investigated by electrochemical measurements. Heat treatment was carried out at 523 K and 673 K for 4 min and 15 min respectively. The evolution of the crystallization process after annealing was identified by differential scanning calorimeter (DSC) as well as X-ray diffraction. The XRD patterns show that the structure of samples heat-treated at higher temperature changes towards a crystal state. The results obtained from the polarization curves reveal that all Al88Ni6La6 alloys exhibit spontaneously passivated behaviour. Furthermore, it is noted that the partially crystallized alloy has the best corrosion resistance in comparison with as-spun amorphous and fully crystallized alloys, while the fully crystallized sample shows deterioration in the corrosion resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of crystallization on the corrosion resistance of a  Cu52.5Ti30Zr11.5Ni6 bulk amorphous alloy in 1 mol/L HCl, and 6 mol/L NaOH solutions were studied. The amorphous alloy was identified by  differential thermal analysis(DSC) and by X-ray diffraction(XRD). The partially and fully crystallized alloys were prepared by controlling the annealing  temperatures at 738 and 873 K for 1 and 12 min, respectively, and the corrosion resistances of those annealed alloys were compared with that of the amorphous alloy by immersion test and potentiodynamic measurements in 1 mol/L HCl and 6 mol/L NaOH solutions. The results show that the  partially crystallized alloy exhibits high corrosion resistance, whereas full crystallization results in deteriorated corrosion resistance compared with that of the as-cast amorphous alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous 55Mg35Ni10Si alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg–Ni–Si bulk amorphous components through powder metallurgy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amorphous 55Mg35NilOSi alloy powder has been synthesized by mechanical alloying technique using pure Mg, Ni and Si elemental powders. The transformation of the crystalline powders into an amorphous one has been investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry. The new material produced has a higher thermal stability than reported results, which is beneficial to the fabrication of Mg-Ni-Si bulk amorphous components through powder metallurgy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis studied the plastic deformation behaviour of bulk metallic glasses by conducting indentations on various thermal histories using bonded interface technique. Another effort was to probe the route to fabricate bulk amorphous alloy via consolidating amorphous powder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports on the mechanical properties of germanium-rich amorphous carbon-germanium alloys prepared by RF sputtering of a germanium/graphite target under an argon/hydrogen atmosphere. Nano-hardness, elastic modulus and stress were investigated as a function of the carbon content. The stress, which is reduced by the incorporation of carbon, was related to the film structure and to the difference in the Ge-Ge and Ge-C bond length. Contrary to what was expected, the hardness and elastic modulus of the alloys are lower than the corresponding values for pure amorphous hydrogenated germanium film, which in turn has both properties also smaller than those of crystalline germanium. These properties are analyzed in terms of the structural properties of the films. (C) 2001 Elsevier B.V. B.V All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of current density, at the interval 5-100 mA cm-2, on the structural and magnetic properties of electrodeposited (Co 100-xNix)100-yWy alloys (x = 23-33.5 at. % Ni, y = 1.7-7.3 at. % W) was studied from a glycine-containing bath. W-content decreases with the increase of the current density magnitude. X-ray data have shown stabilization of hexagonal close packed, face centered cubic or a mixture of these structures by modulating the applied cathodic current density, for values lower than 50 mA cm-2. Two structural phase transitions were observed: one from hexagonal close packed to face centered cubic structural transition occurring for a current density of 20 mA cm -2, and another one, from cubic crystalline phase to amorphous state, which happens for values higher than 50 mA cm-2. These structural phase transitions seem to be associated with the W-content as well as average crystalline grain sizes that reduce with increasing the current density value. The grain size effect may explain the face centered cubic stabilization in Co-rich CoNiW alloys, which was initially assumed to be basically due to H-adsorption/incorporation. Magnetic properties of Co-rich CoNiW alloys are strongly modified by the current density value; as a result of the changes on the W-content and their structural properties© 2013 Elsevier B.V. All rights reserved.