999 resultados para Air Canada
Resumo:
Air transportation of Australian casualties in World War II was initially carried out in air ambulances with an accompanying male medical orderly. By late 1943 with the war effort concentrated in the Pacific, Allied military authorities realised that air transport was needed to move the increasing numbers of casualties over longer distances. The Royal Australian Air Force (RAAF) became responsible for air evacuation of Australian casualties and established a formal medical air evacuation system with trained flight teams early in 1944. Specialised Medical Air Evacuation Transport Units (MAETUs) were established whose sole responsibility was undertaking air evacuations of Australian casualties from the forward operational areas back to definitive medical care. Flight teams consisting of a RAAF nursing sister (registered nurse) and a medical orderly carried out the escort duties. These personnel had been specially trained in Australia for their role. Post-WWII, the RAAF Nursing Service was demobilised with a limited number of nurses being retained for the Interim Air Force. Subsequently, those nurses were offered commissions in the Permanent Air Force. Some of the nurses who remained were air evacuation trained and carried out air evacuations both in Australia and as part of the British Commonwealth Occupation Force in Japan. With the outbreak of the Korean War in June 1950, Australia became responsible for the air evacuation of British Commonwealth casualties from Korea to Japan. With a re-organisation of the Australian forces as part of the British Commonwealth forces, RAAF nurses were posted to undertake air evacuation from Korea and back to Australia from Iwakuni, Japan. By 1952, a specialised casualty staging section was established in Seoul and staffed by RAAF nurses from Iwakuni on a rotation basis. The development of the Australian air evacuation system and the role of the flight nurses are not well documented for the period 1943-1953. The aims of this research are three fold and include documenting the origins and development of the air evacuation system from 1943-1953; analysing and documenting the RAAF nurse’s role and exploring whether any influences or lessons remain valid today. A traditional historical methodology of narrative and then analysis was used to inform the flight nurse’s role within the totality of the social system. Evidence was based on primary data sources mainly held in Defence files, the Australian War Memorial or the National Archives of Australia. Interviews with 12 ex-RAAF nurses from both WWII and the Korean War were conducted to provide information where there were gaps in the primary data and to enable exploration of the flight nurses’ role and their contributions in war of the air evacuation of casualties. Finally, this thesis highlights two lessons that remain valid today. The first is that interoperability of air evacuation systems with other nations is a force multiplier when resources are scarce or limited. Second, the pre-flight assessment of patients was essential and ensured that there were no deaths in-flight.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE.
Resumo:
This paper presents advanced optimization techniques for Mission Path Planning (MPP) of a UAS fitted with a spore trap to detect and monitor spores and plant pathogens. The UAV MPP aims to optimise the mission path planning search and monitoring of spores and plant pathogens that may allow the agricultural sector to be more competitive and more reliable. The UAV will be fitted with an air sampling or spore trap to detect and monitor spores and plant pathogens in remote areas not accessible to current stationary monitor methods. The optimal paths are computed using a Multi-Objective Evolutionary Algorithms (MOEAs). Two types of multi-objective optimisers are compared; the MOEA Non-dominated Sorting Genetic Algorithms II (NSGA-II) and Hybrid Game are implemented to produce a set of optimal collision-free trajectories in three-dimensional environment. The trajectories on a three-dimension terrain, which are generated off-line, are collision-free and are represented by using Bézier spline curves from start position to target and then target to start position or different position with altitude constraints. The efficiency of the two optimization methods is compared in terms of computational cost and design quality. Numerical results show the benefits of coupling a Hybrid-Game strategy to a MOEA for MPP tasks. The reduction of numerical cost is an important point as the faster the algorithm converges the better the algorithms is for an off-line design and for future on-line decisions of the UAV.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
BACKGROUND: A number of epidemiological studies have examined the adverse effect of air pollution on mortality and morbidity. Also, several studies have investigated the associations between air pollution and specific-cause diseases including arrhythmia, myocardial infarction, and heart failure. However, little is known about the relationship between air pollution and the onset of hypertension. OBJECTIVE: To explore the risk effect of particulate matter air pollution on the emergency hospital visits (EHVs) for hypertension in Beijing, China. METHODS: We gathered data on daily EHVs for hypertension, fine particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)), particulate matter less than 10 microm in aerodynamic diameter (PM(10)), sulfur dioxide, and nitrogen dioxide in Beijing, China during 2007. A time-stratified case-crossover design with distributed lag model was used to evaluate associations between ambient air pollutants and hypertension. Daily mean temperature and relative humidity were controlled in all models. RESULTS: There were 1,491 EHVs for hypertension during the study period. In single pollutant models, an increase in 10 microg/m(3) in PM(2.5) and PM(10) was associated with EHVs for hypertension with odds ratios (overall effect of five days) of 1.084 (95% confidence interval (CI): 1.028, 1.139) and 1.060% (95% CI: 1.020, 1.101), respectively. CONCLUSION: Elevated levels of ambient particulate matters are associated with an increase in EHVs for hypertension in Beijing, China.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.
Resumo:
This is the first in a series of four articles which will explore different aspects of air pollution, its impact on health and challenges in defining the boundaries between impact and nonimpact on health. Hardly a new topic one might say. Indeed, it’s been an issue for centuries, millennia even! For example, Pliny the Elder (AD 23-79), a Roman officer and author of the ‘Natural History’ recommended that: “…quarry slaves from asbestos mines not be purchased because they die young”, and suggested: “…the use of a respirator, made of transparent bladder skin, to protect workers from asbestos dust.” Closer to modern times, a Danish Proverb states: "Fresh air impoverishes the doctor". While none of these statements are an air quality guideline in a modern sense, they do illustrate that, for a very long time, we have known that there is a link between air quality and health, and that some measures were taken to reduce the impact of the exposure to the pollutants. Obviously, we are much more sophisticated now!
Resumo:
Background: Many studies have illustrated that ambient air pollution negatively impacts on health. However, little evidence is available for the effects of air pollution on cardiovascular mortality (CVM) in Tianjin, China. Also, no study has examined which strata length for the time-stratified case–crossover analysis gives estimates that most closely match the estimates from time series analysis. Objectives: The purpose of this study was to estimate the effects of air pollutants on CVM in Tianjin, China, and compare time-stratified case–crossover and time series analyses. Method: A time-stratified case–crossover and generalized additive model (time series) were applied to examine the impact of air pollution on CVM from 2005 to 2007. Four time-stratified case–crossover analyses were used by varying the stratum length (Calendar month, 28, 21 or 14 days). Jackknifing was used to compare the methods. Residual analysis was used to check whether the models fitted well. Results: Both case–crossover and time series analyses show that air pollutants (PM10, SO2 and NO2) were positively associated with CVM. The estimates from the time-stratified case–crossover varied greatly with changing strata length. The estimates from the time series analyses varied slightly with changing degrees of freedom per year for time. The residuals from the time series analyses had less autocorrelation than those from the case–crossover analyses indicating a better fit. Conclusion: Air pollution was associated with an increased risk of CVM in Tianjin, China. Time series analyses performed better than the time-stratified case–crossover analyses in terms of residual checking.