865 resultados para Affine Differentiable Spaces
Resumo:
We prove that every non-constant holomorphic map&em&M&/em&&sub&g,p&/sub&→ &em&M&/em&&sub& g',p'&/sub& between moduli spaces of Riemann surfaces is a forgetful map, provided that g ≥ 6 and g' ≤ 2g-2.
Resumo:
This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.
Resumo:
L’informe que es presenta en aquest llibre és el resultat d’un nou acord de col·laboració entre el Programa de les Nacions Unides per als Assentaments Humans (ONU-Habitat) i l’Institut de Seguretat Pública de Catalunya, impulsat amb l’objectiu de millorar la seguretat en esdeveniments públics en els espais urbans a l’Àfrica. La fase pilot es va dur a terme el 2010, durant els dos seminaris de formació realitzats a Mollet del Vallès (Barcelona) com a part de la Plataforma Policia per al Desenvolupament Urbà (PPUD). En aquest informe es descriuen els orígens i l’estat de la iniciativa i resumeix els resultats. També s’inclouen algunes recomanacions per a millorar la seguretat d’esdeveniments públics. Font d'informació: http://www.onuhabitat.org.
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
The Americans with Disabilities Act Accessibility Guidelines (ADAAG) and Chapter 321L of the Iowa Code.
Resumo:
By identifying types whose low-order beliefs up to level li about the state of nature coincide, weobtain quotient type spaces that are typically smaller than the original ones, preserve basic topologicalproperties, and allow standard equilibrium analysis even under bounded reasoning. Our Bayesian Nash(li; l-i)-equilibria capture players inability to distinguish types belonging to the same equivalence class.The case with uncertainty about the vector of levels (li; l-i) is also analyzed. Two examples illustratethe constructions.
Resumo:
We will call a game a reachable (pure strategy) equilibria game if startingfrom any strategy by any player, by a sequence of best-response moves weare able to reach a (pure strategy) equilibrium. We give a characterizationof all finite strategy space duopolies with reachable equilibria. Wedescribe some applications of the sufficient conditions of the characterization.
Resumo:
Presenta los resultados de estudios realizados a partir de la observación de marea rojas en tres lugares de la costa central del Perú: Carquín, Huacho y Callao, producidas por el dinoflagelado Alexandrium affine, siendo éste el primer registro de esta especie en aguas sudamericanas.
Resumo:
Destruction of historical urban fabric in many Chinese cities and towns, without the possibility of its recovery as an urban asset, leads us to consider alternative strategies and criteria for formulating new urban projects, using creative urban planning instruments and strategies to provide a sense of place and identity to the urban landscape. The challenge is to set up an urban structure that constitutes a spatial reference system, a structure consisting of a set of urban landmarks that construct a system of related public spaces, endowed with collective significance and identity. Such a network could include a wide variety of urban typologies and natural elements. An important result of this strategy would be the recovery of the social and cultural values attached to the natural landscape in Chinese civilization. Hangzhou city will be analyzed as a case study
Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
Resumo:
The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.
Resumo:
A new arena for the dynamics of spacetime is proposed, in which the basic quantum variable is the two-point distance on a metric space. The scaling dimension (that is, the Kolmogorov capacity) in the neighborhood of each point then defines in a natural way a local concept of dimension. We study our model in the region of parameter space in which the resulting spacetime is not too different from a smooth manifold.