939 resultados para Adsorption Measurements
Resumo:
The adsorption kinetics of phosphate onto Nb(2)O(5)center dot nH(2)O was investigated at initial phosphate concentrations 10 and 50 mg L(-1). The kinetic process was described by a pseudo second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both Delta H and Delta S suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The effective desorption could be achieved using water at pH 12. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A type of Nb(2)O(5)center dot 3H(2)O was synthesized and its phosphate removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The phosphate adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model with which the maximum P adsorption capacity was estimated to be 18.36 mg-Pg(-1). The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. A phosphate desorbability of approximately 68% was observed with water at pH 12, which indicated a relatively strong bonding between the adsorbed phosphate and the sorptive sites on the surface of the adsorbent. The immobilization of phosphate probably occurs by the mechanisms of ion exchange and physicochemical attraction. Due to its high adsorption capacity, this type of hydrous niobium oxide has the potential for application to control phosphorus pollution.
Resumo:
A type of ZrO(2)center dot nH(2)O Was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g(-1) when the temperature was increased from 298 to 338 K. The positive values of both Delta H degrees and Delta S degrees suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G degrees values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO(2)center dot nH(2)O could be achieved using distilled water at pH 12. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This letter shows that the matrix can be used for redundancy and observability analysis of metering systems composed of PMU measurements and conventional measurements (power and voltage magnitude measurements). The matrix is obtained via triangular factorization of the Jacobian matrix. Observability analysis and restoration is carried out during the triangular factorization of the Jacobian matrix, and the redundancy analysis is made exploring the matrix structure. As a consequence, the matrix can be used for metering system planning considering conventional and PMU measurements. These features of the matrix will be outlined and illustrated by numerical examples.
Resumo:
The liquid and gas phase permeability, of Brazilian Pinus elliotii was studied with a custom built gas and liquid flow rate analysis chamber. The longitudinal gas phase permeability is shown to be six times greater than the radial permeability. There is no statistically significant difference between the longitudinal permeability of water versus wood preservative. Scanning Electron Microscopy (SEM) images confirm that the reported permeability properties arc due to the wood itself rather than to blocked pores or other artifacts of the sample cutting process. Wood composition analysis shows that the samples of Pinus elliotii grown in Brazil are similar to other species of Pinus grown in tropical climates. Specifically, the Pinus elliotti in this study is composed of 17% extractives, 0,27% ashes, 21% hemicellulose, 45% cellulose and 30% lignin. Results arc discussed in the context of the continued search for effective wood preservatives for use in tropical climates.
Resumo:
This study aimed at evaluating biomarkers, individual and population responses in the native Chironomus xanthus to assess the toxicity of pesticide-contaminated sediments from the Monjolinho River (Southeast Brazil). We measured cholinesterase (ChE) and glutathione S-transferase activities (GST), as biomarkers and survival, individual growth and adult emergence, as individual performances. There was no response of the ChE activity and a tendency to decreased GST activity in contaminated sites, but this was generally not statistically significant. Therefore, there was no association of the biomarker responses with exposure to sediment containing pesticides. In contrast, ash free dry mass was significantly increased and male emergence was decreased in C. xanthus exposed to the same sediments. In conclusion, the selected biomarkers were not sensitive and specific enough to detect and anticipate effects of pesticide contamination at the levels measured in the study area. Nevertheless, individual performances alterations pointed to potential pollution problems and possible ecological consequences. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Green tapes of Li(2)O-ZrO(2)-SiO(2)-Al(2)O(3) (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to xi potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525 degrees C, sintering at 700 degrees C for 1 h, and crystallization at 850 degrees C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.
Resumo:
An experimental investigation of the kinetics of cationic polymerization of beta-pinene was performed using two different initiator systems under two different operating conditions (shot additions of initiator, and continuous feeding of monomer). The experiments were done using calorimetric measurements under isoperibolic conditions. The heat of polymerization of beta-pinene was found to be -30.6 kcal . mol(-1). A simple kinetic model was tentatively proposed, and the model fit reasonably well to the different experimental runs. Different values of the fitting parameters were obtained for runs carried out under different conditions, which can probably be ascribed to the presence of adventitious impurities in the commercial-grade monomer used.
Resumo:
Sucrose was used to prepare montmorillonite/carbon nanocomposites by calcination in a reduced atmosphere. The aim was to investigate the changes derived from varying the clay and sucrose content in the resulting material and to change the adsorption properties to evaluate its potential to be used in catalytic applications. X-ray diffraction patterns revealed the formation of an intercalated nanostructure composed of carbon-filled clay mineral layers, which was confirmed by the Fourier transform infrared spectra and thermogravimetry curves. Differences in composition and texture surface were detected by scanning electron microscopy images and were supported by viscosity measurements. These measurements were helpful in understanding why the sample prepared with the highest sucrose content presented the lowest gasoline and methylene blue adsorption results and why the highest adsorption properties were attributed to the sample with the highest clay content. Moreover, BET and BJH studies allowed understanding oleic acid catalytic conversion. Finally, a water flux simulation test was performed to determine the mechanical resistance in comparison to an activated carbon. It was found that the nanocomposites were more resistant, supporting their use in catalytic applications for a longer period of time. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The relation between the properties of polyampholytes in aqueous solution and their adsorption behaviors on silica and cellulose surfaces was investigated. Four polyampholytes carrying different charge densities but with the same nominal ratio of positive to negative segments and two structurally similar polyelectrolytes (a polyacid and a polybase) were investigated by using quartz crystal microgravimetry using silica-coated and cellulose-coated quartz resonators. Time-resolved mass and rigidity (or viscoelasticity) of the adsorbed layer was determined from the shifts in frequency (Delta f) and energy dissipation (Delta D) of the respective resonator. Therefore, elucidation of the dynamics and extent of adsorption, as well as the conformational changes of the adsorbed macromolecules, were possible. The charge properties of the solid Surface played a crucial role in the adsorption of the studied polyampholytes, which was explained by the capability of the surface to polarize the polyampholyte at the interface. Under the same experimental conditions, the polyampholytes had a higher nominal charge density phase-separated near the interface, producing a soft, dissipative, and loosely bound layer. In the case of cellulose substrates, where adsorption was limited, electrostatic and polarization effects were concluded to be less significant.
Resumo:
The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Saran F-310 resin (Dow Chemical Co, Midland, MI) has been widely used to coat soil clods for density and size measurements; however, the manufacturer has recently stopped producing this resin and supplies are difficult to obtain. Hence, we evaluated the feasibility of using Lazzudur 7502 (Sherwin-Williams, Cleveland, OH) automotive varnish to coat soil clods for density measurement. Preliminary evaluations showed that immersion of clods in the varnish did nor affect clod cohesion and that a single immersion in Lazzudur with 30 min of post-immersion drying produced density results nor significantly (P < 0.05) different to those obtained using saran. This technique was tested across seven soils and no significant (P < 0.05) difference was found in the density of the clods measured using the two coating methods. This work suggests that automotive varnish can he used as an alternative to saran resin for clod density measurements.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.