977 resultados para Acyclic glycerol dialkyl glycerol tetraether flux


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vapor-phase dehydration of glycerol to produce acrolein was investigated at 320 A degrees C over rare earth (including La, Ce, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu) pyrophosphates, which were prepared by precipitation method. The most promising catalysts were characterized by means of XRD, FT-IR, TG-DTA, BET and NH3-TPD measurements. The excellent catalytic performance of rare earth pyrophosphate depends on the appropriate surface acidity which can be obtained by the control of pH value in the precipitation and the calcination temperature, e.g. Nd-4(P2O7)(3) precipitated at pH = 6 and calcined at 500 A degrees C in the catalyst preparation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The biosynthesis of glycolipids in E. fasciculatus was studied by C-14 label and chase. The fatty acids in sulphoquinovosyl diacylglycerol (SQDG) were almost 16-carbon and 18-carbon ones. In addition to the two fatty acids, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) contained 8.5 mol% and 31.0 mol% of eicosapentaenoic acid (20 : 5), respectively, and this fatty acid was usually distributed in the sn-1 position of the glycerol backbone. When plants were incubated with [2-C-14] acetate, differences existed in the positional distribution of the labeled fatty acids in sn-1 and sn-2 among the three glycerolipids. In SQDG C-14-labeled fatty acids were distributed uniformly in the sn-1 and sn-2 positions. In DGDG, C-14-labeled fatty acids were mainly distributed in the sn-2 position. In MGDG, the radioactivity of fatty acids in sn-1 position was far greater than that in sn-2 position after a 30 min pulse label, and the difference in radioactivity between the two positions decreased rapidly. The above results indicated that differences in the positional distribution of C-14-labeled fatty acids between sn-1 and sn-2 positions might be related to 20 : 5 and the biosynthesis of DGDG. Our results also suggested that E. fasciculatus had the same DGDG biosynthetic pathway as that in higher plants and galactosyl transferase was selective for MGDC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (Pi). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free Pi and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over Pi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Waste glycerol was converted to secondary amines in a one pot reaction, using Clostridium butyricum and catalytic hydrogen transfer-mediated amination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

1. Crude glycerol from biodiesel production was offered ad libitum to broiler chickens in a 21-d feeding and digestibility trial. The study was designed as a 3*2+1 factorial design with 3 concentrations (33, 67, 100 g/kg) of glycerol from 2 sources, A and B (PRS Environmental Ltd and John Thompson and Sons Ltd) and a control diet. The diets were formulated to contain apparent metabolisable energy (AME) of 12.95 MJ/kg (assuming 14.6 MJ/kg for glycerol).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were grown on Sabouraud Dextrose Agar (SDA) modified with KCl to give a range of water activity (a(w)) from 0.938 to 0.998. Growth of all three species was optimal at 0.983 a(w) and growth occurred over the a(w) range tested. Acyclic sugar alcohol (polyol) and trehalose content of conidia was determined by HPLC and found to vary with species and a(w). Conidia of B. bassiana and P. farinosus were found to contain totals of 1.5% and 2.3% polyols respectively at 0.998 a(w), and double these amounts at <0.950 a(w). Conidia of M. anisopliae contained from 5.7% to 6.8% polyols at each a(w) tested. In conidia of all three species the predominant polyol was mannitol. The lower molecular weight polyols, arabitol and erythritol, were found to accumulate at reduced a(w). Small amounts of glycerol were present in conidia of each species; <15% total polyols. Conidia of B. bassiana and M. anisopliae contained about 0.5% trehalose from 0.970 to 0.998 a(w), but only trace amounts below 0.950 a(w). Conidia of P. farinosus contained 2.1% trehalose at 0.998 a(w) and this decreased to <0.1% below 0.950 a(w). Potential to manipulate the endogenous reserves of conidia of these biological control agents to enhance viability and desiccation tolerance is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemical activities of hydrophobic substances can determine the windows of environmental conditions over which microbial systems function and the metabolic inhibition of microorganisms by benzene and other hydrophobes can, paradoxically, be reduced by compounds that protect against cellular water stress (Bhaganna et al. in Microb Biotechnol 3:701-716, 2010; Cray et al. in Curr Opin Biotechnol 33:228-259, 2015a). We hypothesized that this protective effect operates at the macromolecule structure-function level and is facilitated, in part at least, by genome-mediated adaptations. Based on proteome profiling of the soil bacterium Pseudomonas putida, we present evidence that (1) benzene induces a chaotrope-stress response, whereas (2) cells cultured in media supplemented with benzene plus glycerol were protected against chaotrope stress. Chaotrope-stress response proteins, such as those involved in lipid and compatible-solute metabolism and removal of reactive oxygen species, were increased by up to 15-fold in benzene-stressed cells relative to those of control cultures (no benzene added). By contrast, cells grown in the presence of benzene + glycerol, even though the latter grew more slowly, exhibited only a weak chaotrope-stress response. These findings provide evidence to support the hypothesis that hydrophobic substances induce a chaotropicity-mediated water stress, that cells respond via genome-mediated adaptations, and that glycerol protects the cell's macromolecular systems. We discuss the possibility of using compatible solutes to mitigate hydrocarbon-induced stresses in lignocellulosic biofuel fermentations and for industrial and environmental applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the European Union the turn towards renewable energy sources has increased the production of biodiesel from rapeseed oil, leaving glycerol (also known as glycerin) as a valuable by-product. For every litre of biodiesel produced, approximately 79 g of crude glycerol are generated. As the biodiesel production grows, the quantity of crude glycerol generated will be considerable and its utilization will become an urgent topic. One possibility is the use of crude glycerol on animal feeds. Glycerol has been evaluated as a dietary energy source for several farm animals, including fish. A study was undertaken to assess the effect of dietary biodiesel-derived glycerol (from rapeseed oil) on the overall growth performance, digestive capacity and metabolic nutrient utilization in juvenile gilthead seabream fed a low fishmeal level diet. Two practical diets were formulated to be isonitrogenous (crude protein, 45.4% DM), isolipidic (18.5% DM) and isoenergetic (gross energy, 21.3 kJ/g DM). The control diet (CTRL) was formulated with intermediate levels of marine-derived proteins (19%). In the same basal formulation, 5% glycerol (GLY) was incorporated at the expenses of wheat. Each dietary treatment was tested in triplicate tanks over 63 days, with 20 gilthead seabream (Sparus aurata), with a mean initial body weight (IBW) of 27.9  0.12 g. At the end of the trial, fish fed the CTRL diet reached a final body weight of 84.3  2.2 g (more than 3-fold increase of initial body weight). Fish fed the GLY diet showed a significantly higher (P<0.05) growth, expressed in terms of final body weight and specific growth rate. Voluntary feed intake was similar between the two treatments, but both feed efficiency and protein efficiency ratio were significantly improved (P<0.05) in fish fed the GLY diet. Dietary glycerol had no effect (P>0.05) on the apparent digestibility of protein. In comparison to the control treatment, dietary glycerol significantly improved (P<0.05) protein and fat retention. Activities of digestive enzymes were significantly affected by the various dietary treatments. Fish fed the GLY diet showed an enhanced activity of alkaline phosphatase (ALP) and pepsin, while activities of lipase and leucine-alanine peptidase (LAP) were little affected by dietary glycerol. Fish show the ability to use crude glycerol as a dietary energy substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was developed with the purpose to investigate the effect of polysaccharide/plasticiser concentration on the microstructure and molecular dynamics of polymeric film systems, using transmission electron microscope imaging (TEM) and nuclear magnetic resonance (NMR) techniques. Experiments were carried out in chitosan/glycerol films prepared with solutions of different composition. The films obtained after drying and equilibration were characterised in terms of composition, thickness and water activity. Results show that glycerol quantities used in film forming solutions were responsible for films composition; while polymer/total plasticiser ratio in the solution determined the thickness (and thus structure) of the films. These results were confirmed by TEM. NMR allowed understanding the films molecular rearrangement. Two different behaviours for the two components analysed, water and glycerol were observed: the first is predominantly moving free in the matrix, while glycerol is mainly bounded to the chitosan chain. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra-added stabilizers is described. The synthesis proposed in this work may impact on the non-polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10−7–1.5×10−5 M concentration range, a good detection sensitivity (0.268 A L mol−1), and a low detection limit of 2.0×10−7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high sugar concentration in Icewine juice exerts hyperosmotic stress in the wine yeast causing water loss and cell shrinkage. To counteract the dehydration, yeast synthesize and accumulate glycerol as an internal osmolyte. In a laboratory strain of S. cerevisiae, STLl encodes for Stllp, an H+ /glycerol symporter that is glucose inactivated, but induced upon hyperosmotic stress. STLl, was found to be a highly upregulated gene in Icewine fermenting cells and its expression was 25-fold greater than in yeast cells fermenting diluted Icewine juice, making it one of the most differentially expressed genes between the two fermentation conditions. In addition, Icewine fermenting cells showed a two-fold higher glycerol production in the wine compared to yeast fermenting diluted Icewine juice. We proposed that Stllp is (1) active during Icewine fermentation and is not glucose inactivated and (2) its activity contributes to the limited cell growth observed during Icewine fermentation as a result of the dissipation of the plasma membrane proton gradient. To measure the contribution ofStl1p in active glycerol transport (energy dependent) during Icewine fermentation, we first developed an Stllp-dependent (14C]glycerol uptake assay using a laboratory strain of S. cerevisiae (BY 4742 and LiSTLl) that was dependent on the plasma membrane proton gradient and therefore energy-dependent. Wine yeast K1-Vll16 was also shown to have this energy dependent glycerol uptake induced under salt stress. The expression of STLl and Stllp activity were compared between yeast cells harvested from Icewine and diluted Icewine fermentations. Northern blot analysis revealed that STLl was expressed in cells fermenting Icewine juice but not expressed under the diluted juice conditions. Glycerol uptake by cells fermenting Icewine juice was not significantly different than cells fermenting diluted Icewine juice on day 4 and day 7 of Vidal and Riesling fermentations respectively, despite encountering greater hyperosmotic stress. Furthermore, energy- dependent glycerol uptake was not detected under either fermentation conditions. Because our findings show that active glycerol uptake was not detected in yeast cells harvested from Icewine fermentation, it is likely that Stllp was glucose inactivated despite the hyperosmotic stress induced by the Icewine juice and therefore did not play a role in active glycerol uptake during Icewine fermentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of industrial wastes rich in mineral nutrients and carbon sources to increase the final microalgal biomass and lipid yield at a low cost is an important strategy to make algal biofuel technology viable. Using strains from the microalgal collection of the Université de Montréal, this report shows for the first time that microalgal strains can be grown on xylose, the major carbon source found in wastewater streams from pulp and paper industries, with an increase in growth rate of 2.8 fold in comparison to photoautotrophic growth, reaching up to µ=1.1/day. On glycerol, growth rates reached as high as µ=1.52/day. Lipid productivity increased up to 370% on glycerol and 180% on xylose for the strain LB1H10, showing the suitability of this strain for further development for biofuels production through mixotrophic cultivation.