973 resultados para Accuracy rate
Resumo:
Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.
Resumo:
Whenever we open our eyes, we are confronted with an overwhelming amount of visual information. Covert attention allows us to select visual information at a cued location, without eye movements, and to grant such information priority in processing. Covert attention can be voluntarily allocated, to a given location according to goals, or involuntarily allocated, in a reflexive manner, to a cue that appears suddenly in the visual field. Covert attention improves discriminability in a wide variety of visual tasks. An important unresolved issue is whether covert attention can also speed the rate at which information is processed. To address this issue, it is necessary to obtain conjoint measures of the effects of covert attention on discriminability and rate of information processing. We used the response-signal speed-accuracy tradeoff (SAT) procedure to derive measures of how cueing a target location affects speed and accuracy in a visual search task. Here, we show that covert attention not only improves discriminability but also accelerates the rate of information processing.
Resumo:
In the analysis of heart rate variability (HRV) are used temporal series that contains the distances between successive heartbeats in order to assess autonomic regulation of the cardiovascular system. These series are obtained from the electrocardiogram (ECG) signal analysis, which can be affected by different types of artifacts leading to incorrect interpretations in the analysis of the HRV signals. Classic approach to deal with these artifacts implies the use of correction methods, some of them based on interpolation, substitution or statistical techniques. However, there are few studies that shows the accuracy and performance of these correction methods on real HRV signals. This study aims to determine the performance of some linear and non-linear correction methods on HRV signals with induced artefacts by quantification of its linear and nonlinear HRV parameters. As part of the methodology, ECG signals of rats measured using the technique of telemetry were used to generate real heart rate variability signals without any error. In these series were simulated missing points (beats) in different quantities in order to emulate a real experimental situation as accurately as possible. In order to compare recovering efficiency, deletion (DEL), linear interpolation (LI), cubic spline interpolation (CI), moving average window (MAW) and nonlinear predictive interpolation (NPI) were used as correction methods for the series with induced artifacts. The accuracy of each correction method was known through the results obtained after the measurement of the mean value of the series (AVNN), standard deviation (SDNN), root mean square error of the differences between successive heartbeats (RMSSD), Lomb\'s periodogram (LSP), Detrended Fluctuation Analysis (DFA), multiscale entropy (MSE) and symbolic dynamics (SD) on each HRV signal with and without artifacts. The results show that, at low levels of missing points the performance of all correction techniques are very similar with very close values for each HRV parameter. However, at higher levels of losses only the NPI method allows to obtain HRV parameters with low error values and low quantity of significant differences in comparison to the values calculated for the same signals without the presence of missing points.
Resumo:
We sought to improve the feasibility of strain rate imaging (SRI) during dobutamine stress echocardiography (DSE) in 56 subjects at low risk of coronary disease. The impact of several SRI changes during acquisition were studied, including: (1) changing from fundamental to harmonic imaging; (2) parallel beam-forming; (3) alteration of spatial resolution and (4) narrow sector acquisition. We assessed SR signal quality, a quantitative measure of signal noise and measurements of SRI. Of 1462 segments evaluated, 6% were uninterpretable at rest and 8% at peak stress. Signal quality was optimised by increasing temporal (p = 0.01) and spatial resolution (p<0.0001 vs. baseline imaging) at rest and peak. Increasing spatial resolution also minimised signal noise (p<0.0001). Inter-observer variability of time to peak SR and peak SR were less with high temporal and spatial resolution. SRI quality can be improved with harmonic imaging and higher temporal resolution but optimisation of spatial resolution is critical. (C) 2004 World Federation for Ultrasound in Medicine Biology.
Resumo:
Achievement of steady state during indirect calorimetry measurements of resting energy expenditure (REE) is necessary to reduce error and ensure accuracy in the measurement. Steady state is often defined as 5 consecutive min (5-min SS) during which oxygen consumption and carbon dioxide production vary by +/-10%. These criteria, however, are stringent and often difficult to satisfy. This study aimed to assess whether reducing the time period for steady state (4-min SS or 3-min SS) produced measurements of REE that were significantly different from 5-min SS. REE was measured with the use of open-circuit indirect calorimetry in 39 subjects, of whom only 21 (54%) met the 5-min SS criteria. In these 21 subjects, median biases in REE between 5-min SS and 4-min SS and between 5-min SS and 3-min SS were 0.1 and 0.01%, respectively. For individuals, 4-min SS measured REE within a clinically acceptable range of +/-2% of 5-min SS, whereas 3-min SS measured REE within a range of -2-3% of 5-min SS. Harris-Benedict prediction equations estimated REE for individuals within +/-20-30% of 5-min SS. Reducing the time period of steady state to 4 min produced measurements of REE for individuals that were within clinically acceptable, predetermined limits. The limits of agreement for 3-min SS fell outside the predefined limits of +/-2%; however, both 4-min SS and 3-min SS criteria greatly increased the proportion of subjects who satisfied steady state within smaller limits than would be achieved if relying on prediction equations.
Resumo:
The H I Parkes All Sky Survey (HIPASS) is a blind extragalactic H I 21-cm emission-line survey covering the whole southern sky from declination -90degrees to +25degrees. The HIPASS catalogue (HICAT), containing 4315 H I-selected galaxies from the region south of declination +2degrees, is presented in Meyer et al. (Paper I). This paper describes in detail the completeness and reliability of HICAT, which are calculated from the recovery rate of synthetic sources and follow-up observations, respectively. HICAT is found to be 99 per cent complete at a peak flux of 84 mJy and an integrated flux of 9.4 Jy km. s(-1). The overall reliability is 95 per cent, but rises to 99 per cent for sources with peak fluxes >58 mJy or integrated flux >8.2 Jy km s(-1). Expressions are derived for the uncertainties on the most important HICAT parameters: peak flux, integrated flux, velocity width and recessional velocity. The errors on HICAT parameters are dominated by the noise in the HIPASS data, rather than by the parametrization procedure.
Resumo:
Purpose: Tissue Doppler strain rate imaging (SRI) have been validated and applied in various clinical settings, but the clinical use of this modality is still limited due to time-consuming postprocessing, unfavorable signal to noise ratio and major angle dependency of image acquisition. 2D Strain (2DS) measures strain parameters through automated tissue tracking (Lagrangian strain) rather than tissue velocity regression. We sought to compare the accuracy of this technique with SRI and evaluate whether it overcomes the above limitations. Methods: We assessed 26 patients (13 female, age 60±5yrs) at low risk of CAD and with normal DSE at both baseline and peak stress. End systolic strain (ESS), peak systolic strain rate (SR), and timing parameters were measured by two independent observers using SRI and 2D Strain. Myocardial segments were excluded from the analyses if the insonation angle exceeded 30 degrees or if the segments were not visualized; 417 segments were evaluated. Results: Normal ranges for TVI and CEB approaches were comparable for SR (-0.99 ± 0.39 vs -0.88 ± 0.36, p=NS), ESS (-15.1 ± 6.5 vs -14.9 ± 6.3, p=NS), time to end of systole (174 ± 47 vs 174 ± 53, p=NS) and time to peak SR (TTP; 340 ± 34 vs 375 ± 57). The best correlations between the techniques were for time to end systole (rest r=0.6, p
Resumo:
We propose several all-pass spectrally-periodic optical structures composed of simple optical cavities for the implementation of repetition rate multipliers of periodic pulse train with uniform output train envelope by phase-only filtering, and analyze them in terms of robustness and accuracy.
Resumo:
The present thesis investigates pattern glare susceptibility following stroke and the immediate and prolonged impact of prescribing optimal spectral filters on reading speed, accuracy and visual search performance. Principal observations: A case report has shown that visual stress can occur following stroke. The use of spectral filters and precision tinted lenses proved to be a successful intervention in this case, although the parameters required modification following a further stroke episode. Stroke subjects demonstrate elevated levels of pattern glare compared to normative data values and a control group. Initial use of an optimal spectral filter in a stroke cohort increased reading speed by ~6% and almost halved error scores, findings not replicated in a control group. With the removal of migraine subjects reading speed increased by ~8% with an optimal filter and error scores almost halved. Prolonged use of an optimal spectral filter for stroke subjects, increased reading speed by >9% and error scores more than halved. When the same subjects switched to prolonged use of a grey filter, reading speed reduced by ~4% and error scores increased marginally. When a second group of stroke subjects used a grey filter first, reading speed decreased by ~3% but increased by ~3% with prolonged use of an optimal filter, with error scores almost halving; these findings persisted with migraine subjects excluded. Initial use of an optimal spectral filter improved visual search response time but not error scores in a stroke cohort with migraine subjects excluded. Neither prolonged use of an optimal nor grey filter improved response time or reduced error scores in a stroke group; these findings persisted with the exclusion of migraine subjects.
Resumo:
Purpose - The aim of the study was to determine the effect of optimal spectral filters on reading performance following stroke. Methods - Seventeen stroke subjects, aged 43-85, were considered with an age-matched Control Group (n = 17). Subjects undertook the Wilkins Rate of Reading Test on three occasions: (i) using an optimally selected spectral filter; (ii) subjects were randomly assigned to two groups: Group 1 used an optimal filter, whereas Group 2 used a grey filter, for two-weeks. The grey filter had similar photopic reflectance to the optimal filters, intended as a surrogate for a placebo; (iii) the groups were crossed over with Group 1 using a grey filter and Group 2 given an optimal filter, for two weeks, before undertaking the task once more. An increase in reading speed of >5% was considered clinically relevant. Results - Initial use of a spectral filter in the stroke cohort, increased reading speed by ~8%, almost halving error scores, findings not replicated in controls. Prolonged use of an optimal spectral filter increased reading speed by >9% for stroke subjects; errors more than halved. When the same subjects switched to using a grey filter, reading speed reduced by ~4%. A second group of stroke subjects used a grey filter first; reading speed decreased by ~3% but increased by ~4% with an optimal filter, with error scores almost halving. Conclusions - The present study has shown that spectral filters can immediately improve reading speed and accuracy following stroke, whereas prolonged use does not increase these benefits significantly. © 2013 Spanish General Council of Optometry.
Resumo:
We propose and analyze several simple all-pass spectrally-periodic optical structures, in terms of accuracy and robustness, for the implementation of repetition rate multipliers of periodic pulse train with uniform output train envelope, finding optimum solutions for multiplication factors of 3, 4, 6, and 12.
Resumo:
Objective: To test the practicality and effectiveness of cheap, ubiquitous, consumer-grade smartphones to discriminate Parkinson’s disease (PD) subjects from healthy controls, using self-administered tests of gait and postural sway. Background: Existing tests for the diagnosis of PD are based on subjective neurological examinations, performed in-clinic. Objective movement symptom severity data, collected using widely-accessible technologies such as smartphones, would enable the remote characterization of PD symptoms based on self-administered, behavioral tests. Smartphones, when backed up by interviews using web-based videoconferencing, could make it feasible for expert neurologists to perform diagnostic testing on large numbers of individuals at low cost. However, to date, the compliance rate of testing using smart-phones has not been assessed. Methods: We conducted a one-month controlled study with twenty participants, comprising 10 PD subjects and 10 controls. All participants were provided identical LG Optimus S smartphones, capable of recording tri-axial acceleration. Using these smartphones, patients conducted self-administered, short (less than 5 minute) controlled gait and postural sway tests. We analyzed a wide range of summary measures of gait and postural sway from the accelerometry data. Using statistical machine learning techniques, we identified discriminating patterns in the summary measures in order to distinguish PD subjects from controls. Results: Compliance was high all 20 participants performed an average of 3.1 tests per day for the duration of the study. Using this test data, we demonstrated cross-validated sensitivity of 98% and specificity of 98% in discriminating PD subjects from healthy controls. Conclusions: Using consumer-grade smartphone accelerometers, it is possible to distinguish PD from healthy controls with high accuracy. Since these smartphones are inexpensive (around $30 each) and easily available, and the tests are highly non-invasive and objective, we envisage that this kind of smartphone-based testing could radically increase the reach and effectiveness of experts in diagnosing PD.
Resumo:
Hotel feasibility studies are critical in the determination of hotel construction, sales and refinancing. Discrepancies have been reported between forecasted results and actual operating results. The author, with funding provided by the Hilton corporation, examines whether such studies under- state or overstate occupancy, average rate, and net income.
Resumo:
Biological detectors, such as canines, are valuable tools used for the rapid identification of illicit materials. However, recent increased scrutiny over the reliability, field accuracy, and the capabilities of each detection canine is currently being evaluated in the legal system. For example, the Supreme Court case, State of Florida v. Harris, discussed the need for continuous monitoring of canine abilities, thresholds, and search capabilities. As a result, the fallibility of canines for detection was brought to light, as well as a need for further research and understanding of canine detection. This study is two-fold, as it looks to not only create new training aids for canines that can be manipulated for dissipation control, but also investigates canine field accuracy to objects with similar odors to illicit materials. It was the goal of this research to improve upon current canine training aid mimics. Sol-gel polymer training aids, imprinted with the active odor of cocaine, were developed. This novel training aid improved upon the longevity of currently existing training aids, while also provided a way to manipulate the polymer network to alter the dissipation rate of the imprinted active odors. The manipulation of the polymer network could allow handlers to control the abundance of odors presented to their canines, familiarizing themselves to their canine’s capabilities and thresholds, thereby increasing the canines’ strength in court. The field accuracy of detection canines was recently called into question during the Supreme Court case, State of Florida v. Jardines, where it was argued that if cocaine’s active odor, methyl benzoate, was found to be produced by the popular landscaping flower, snapdragons, canines will false alert to said flowers. Therefore, snapdragon flowers were grown and tested both in the laboratory and in the field to determine the odors produced by snapdragon flowers; the persistence of these odors once flowers have been cut; and whether detection canines will alert to both growing and cut flowers during a blind search scenario. Results revealed that although methyl benzoate is produced by snapdragon flowers, certified narcotics detection canines can distinguish cocaine’s odor profile from that of snapdragon flowers and will not alert.