2D strain - a new approach to strain and strain rate: the solution to the angle-dependence of tissue Doppler?
Data(s) |
01/01/2004
|
---|---|
Resumo |
Purpose: Tissue Doppler strain rate imaging (SRI) have been validated and applied in various clinical settings, but the clinical use of this modality is still limited due to time-consuming postprocessing, unfavorable signal to noise ratio and major angle dependency of image acquisition. 2D Strain (2DS) measures strain parameters through automated tissue tracking (Lagrangian strain) rather than tissue velocity regression. We sought to compare the accuracy of this technique with SRI and evaluate whether it overcomes the above limitations. Methods: We assessed 26 patients (13 female, age 60±5yrs) at low risk of CAD and with normal DSE at both baseline and peak stress. End systolic strain (ESS), peak systolic strain rate (SR), and timing parameters were measured by two independent observers using SRI and 2D Strain. Myocardial segments were excluded from the analyses if the insonation angle exceeded 30 degrees or if the segments were not visualized; 417 segments were evaluated. Results: Normal ranges for TVI and CEB approaches were comparable for SR (-0.99 ± 0.39 vs -0.88 ± 0.36, p=NS), ESS (-15.1 ± 6.5 vs -14.9 ± 6.3, p=NS), time to end of systole (174 ± 47 vs 174 ± 53, p=NS) and time to peak SR (TTP; 340 ± 34 vs 375 ± 57). The best correlations between the techniques were for time to end systole (rest r=0.6, p |
Identificador | |
Idioma(s) |
eng |
Publicador |
Oxford University Press |
Palavras-Chave | #EX #321003 Cardiology (incl. Cardiovascular Diseases) #730106 Cardiovascular system and diseases |
Tipo |
Conference Paper |