951 resultados para ALUMINUM SILICATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical model is proposed to determine the effects of Si substitution with Al on the oxygen diffusion in apatite-type lanthanum silicates based on density-functional theory (DFT) calculations for La10(SiO 4)4(AlO4)2O2. Substitution changes the stable configuration for excess oxygen from the split interstitial to a new cluster form with the original cluster. Al doping completely changes the migration mechanism from the interstitialcy one, which was proposed for the La9.33(SiO4)6O2 starting material, to a mechanism which contains an interstitial process. Nevertheless, the migration barrier is calculated to be 0.81 eV, which indicates small changes in oxygen conduction and is consistent with the observations. The present study indicates that the cation substitution on silicon site alone does not promise the improvement of the oxide ion conduction in the lanthanum silicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen ions form split interstitials with the original oxygen ions, while the neutral and the single-negatively charged states preferably form molecular oxygen. These species were found near the lanthanum vacancy site. The theoretically determined migration pathway along the c-axis essentially follows an interstitialcy mechanism. The obtained migration barrier is sensitive to the charge state, and is also affected by the lanthanum vacancy. The barrier height of the double-negatively charged state was calculated to be 0.58 eV for the model structure, which is consistent with the measured activation energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mo(Si1-xAlx)(2) compositions (x = 0-0.1) have been prepared by a modified SHS route under uniaxial hydrostatic pressure. Oxidation studies carried out by thermal analysis and sheet resistivity indicate an improvement in the low temperature (700-900 K) oxidation resistance with increasing aluminum addition. Dilatometric results show a decrease in the a value up to x = 0.05 substitution. With the aluminum substitution, both thermal expansion coefficient and thermal conductivity show decrease in their values except in the biphasic region. The x = 0.05 composition containing both C11(b) and C40 phases is a promising material for high temperature thermal barrier coating as it shows higher oxidation resistance and a similar K/alpha value as compared to pure MoSi, (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembly consisting of cast and wrought aluminum alloys has wide spread application in defense and aero space industries. For the efficacious use of the transition joints, the weld should have adequate strength and formability. In the present investigation, A356 and 6061 aluminum alloys were friction stir welded under tool rotational speed of 1000-1400 rpm and traversing speed of 80-240 mm/min, keeping other parameters same. The variable process window is responsible for the change in total heat input and cooling rate during welding. Structural characterization of the bonded assemblies exhibits recovery-recrystallization in the stirring zone and breaking of coarse eutectic network of Al-Si. Dispersion of fine Si rich particles, refinement of 6061 grain size, low residual stress level and high defect density within weld nugget contribute towards the improvement in bond strength. Lower will be the tool rotational and traversing speed, more dominant will be the above phenomena. Therefore, the joint fabricated using lowest tool traversing and rotational speed, exhibits substantial improvement in bond strength (similar to 98% of that of 6061 alloy), which is also maximum with respect to others. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of smilagenin acetate (Va) using a boron trifluoride etherate-lithium aluminum hydride reagent, followed by hydrogen peroxide oxidation and acetylation, was found to yield: 3β-ethoxysmilagenin (Vb), 3β-ethoxydihydrosmilagenin acetate (VIa), dihydrosmilagenin diacetate (VIb), and a complex mixture of partially acetylated products. Similar reaction conditions were employed to convert dihydrodiosgenin (II) to dihydrochlorogenin (III). Boron trifluoride etherate-lithium aluminum hydride reduction of 3β-acetoxy-5α-cholestane and 3β-acetoxy-5α-lanostane (VIIIa) was shown to yield the corresponding 3β-ethoxy (e.g., VIIIb) derivatives.