914 resultados para 3-Hydroxysteroid Dehydrogenases -- genetics -- metabolism
Resumo:
Bibliographical footnotes.
Resumo:
Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290: E154-E162, 2006. First published August 23, 2005; doi:10.1152/ajpendo. 00330.2005.-Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser645, Ser649, Ser653, Ser657) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. Insulin resistance is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.
Resumo:
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited properly.
Resumo:
Leishmania major parasites reside and multiply in late endosomal compartments of host phagocytic cells. Immune control of Leishmania growth absolutely requires expression of inducible Nitric Oxide Synthase (iNOS/NOS2) and subsequent production of NO. Here, we show that CD11b+ CD11c+ Ly-6C+ MHC-II+ cells are the main iNOS-producing cells in the footpad lesion and in the draining lymph node of Leishmania major-infected C57BL/6 mice. These cells are phenotypically similar to iNOS-producing inflammatory DC (iNOS-DC) observed in the mouse models of Listeria monocytogenes and Brucella melitensis infection. The use of DsRed-expressing parasites demonstrated that these iNOS-producing cells are the major infected population in the lesions and the draining lymph nodes. Analysis of various genetically deficient mouse strains revealed the requirement of CCR2 expression for the recruitment of iNOS-DC in the draining lymph nodes, whereas their activation is strongly dependent on CD40, IL-12, IFN-gamma and MyD88 molecules with a partial contribution of TNF-alpha and TLR9. In contrast, STAT-6 deficiency enhanced iNOS-DC recruitment and activation in susceptible BALB/c mice, demonstrating a key role for IL-4 and IL-13 as negative regulators. Taken together, our results suggest that iNOS-DC represent a major class of Th1-regulated effector cell population and constitute the most frequent infected cell type during chronic Leishmania major infection phase of C57BL/6 resistant mice.
Resumo:
Background: During female reproductive cycles, a rapid fall in circulating progesterone (P4) levels is one of the earliest events that occur during induced luteolysis in mammals. In rodents, it is well recognized that during luteolysis, P4 is catabolized to its inactive metabolite, 20alpha-hydroxyprogesterone (20alpha-OHP) by the action of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) enzyme and involves transcription factor, Nur77. Studies have been carried out to examine expression of 20alpha-HSD and its activity in the corpus luteum (CL) of buffalo cow. Methods: The expression of 20alpha-HSD across different bovine tissues along with CL was examined by qPCR analysis. Circulating P4 levels were monitored before and during PGF2alpha treatment. Expression of 20alpha-HSD and Nur77 mRNA was determined in CL at different time points post PGF2alpha treatment in buffalo cows. The chromatographic separation of P4 and its metabolite, 20alpha-OHP, in rat and buffalo cow serum samples were performed on reverse phase HPLC system. To further support the findings, 20alpha-HSD enzyme activity was quantitated in cytosolic fraction of CL of both rat and buffalo cow. Results: Circulating P4 concentration declined rapidly in response to PGF2alpha treatment. HPLC analysis of serum samples did not reveal changes in circulating 20alpha-OHP levels in buffalo cows but serum from pseudo pregnant rats receiving PGF2alpha treatment showed an increased 20alpha-OHP level at 24 h post treatment with accompanying decrease in P4 concentration. qPCR expression of 20alpha-HSD in CL from control and PGF2alpha-treated buffalo cows showed higher expression at 3 and 18 h post treatment, but its specific activity was not altered at different time points post PGF2alpha treatment. The Nur77 expression increased several fold 3 h post PGF2alpha treatment similar to the increased expression observed in the PGF2alpha-treated pseudo pregnant rats which perhaps suggest initiation of activation of apoptotic pathways in response to PGF2alpha treatment. Conclusions: The results taken together suggest that synthesis of P4 appears to be primarily affected by PGF2alpha treatment in buffalo cows in contrast to increased metabolism of P4 in rodents.
Resumo:
The genetics and biochemistry involved in the biodegradation of styrene and the production of polyhydroxyalkanoates in Pseudomonas putida CA-3 have been well characterised to date. Knowledge of the role played by global regulators in controlling these pathways currently represents a critical knowledge gap in this area. Here we report on our efforts to identify such regulators using mini-Tn5 transposon mutagenesis of the P. putida CA-3 genome. The library generated was subjected to phenotypic screening to identify mutants exhibiting a reduced sensitivity to the effects of carbon catabolite repression of aromatic pathway activity. Our efforts identified a clpX disrupted mutant which exhibited wild-type levels of growth on styrene but significantly reduced growth on phenylacetic acid. RT-PCR analysis of key PACoA catabolon genes necessary for phenylacetic acid metabolism, and SDS-PAGE protein profile analyses suggest that no direct alteration of PACoA pathway transcriptional or translational activity was involved. The influence of global regulators affecting the accumulation of PHAs in P. putida CA-3 was also studied. Phenotypic screening of the mini-Tn5 library revealed a gacS sensor kinase gene disruption resulting in the loss of PHA accumulation capacity in P. putida CA-3. Subsequent SDS-PAGE protein analyses of the wild type and gacS mutant strains identified post-transcriptional control of phaC1 synthase as a key point of control of PHA synthesis in P. putida CA-3. Disruption of the gacS gene in another PHA accumulating organism, P. putida S12, also demonstrated a reduction of PHA accumulation capacity. PHA accumulation was observed to be disrupted in the CA-3 gacS mutant under phosphorus limited growth conditions. Over-expression studies in both wild type CA-3 and gacS mutant demonstrated that rsmY over-expression in gacS disrupted P. putida CA-3 is insufficient to restore PHA accumulation in the cell however in wild type cells, over-expression of rsmY results in an altered PHA monomer compositions.
Resumo:
1. Glucose-6-phosphate dehydrogenase from the hepatopancreas and mantle tissue of M. edulis was investigated over two years for changes in specific activity (crude enzyme preparations) and the apparent Michaelis constants for G6P and NADP+ (highly purified enzyme preparations). 2. The specific activity of the mantle enzyme was low in summer and autumn and increased in the winter during the time of lipid deposition. In contrast, the specific activity of the hepatopancreas enzyme was high in summer and declined during the autumn and winter. 3. The apparent values for G6P and NADP+ of the mantle enzymechange little during a year. Changes were observed for the hepatopancreas enzyme during the first year but not the second.
Resumo:
INTRODUCTION: Galectin family members have been demonstrated to be abnormally expressed in cancer at the protein and mRNA level. This study investigated the levels of galectin proteins and mRNA expression in a large cohort of patients with papillary thyroid carcinoma and matched lymph node metastases with particular emphasis on galectin-1 and galectin-3. METHODS: mRNA expression of galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were analysed by real-time polymerase chain reaction in 65 papillary thyroid carcinomas, 30 matched lymph nodes with metastatic papillary thyroid carcinoma and 5 non-cancer thyroid tissues. Galectin-1 and 3 protein expression was determined by immunohistochemistry in these samples. RESULTS: Significant expression differences in all tested galectin family members (1, 2, 3, 4, 7, 8, 9, 10 and 12) were noted for mRNA in papillary thyroid carcinomas, with and without lymph node metastasis. Galectin-1 protein was more strongly expressed than galectin-3 protein in papillary thyroid carcinoma. Galectin-1 protein was found to be overexpressed in 32% of primary papillary thyroid carcinomas. A majority of lymph nodes with metastatic papillary thyroid carcinoma (53%) had significantly increased expression of galectin-1 protein, as did 47% of primaries with metastases. Galectin-1 mRNA levels were decreased in the vast majority (94%) of primary thyroid carcinomas that did not have metastases present. Galectin-3 protein levels were noted to be overexpressed in 15% of primary papillary thyroid carcinomas. In primary papillary thyroid carcinoma with lymph node metastases, 32% had over expression of galectin-3 protein. Overexpression of galectin-3 mRNA was noted in 58% of papillary thyroid carcinomas and 64% of lymph nodes bearing metastatic papillary thyroid carcinoma. Also, primary papillary thyroid carcinoma with lymph node metastases had significantly higher expression of galectin-3 mRNA compared to those without lymph node metastases. CONCLUSION: Galectin family members show altered expression at the mRNA level in papillary thyroid cancers. Overexpression of galectin-1 and 3 proteins were noted in papillary thyroid carcinoma with lymph node metastases. The results presented here demonstrated that galectin-1 and galectin-3 expression have important roles in clinical progression of papillary thyroid carcinoma.
Resumo:
Fatty acids, fibre, carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk for type 2 diabetes a cross-sectional analysis Type 2 diabetes (T2D) is a heterogeneous disorder of carbohydrate, lipid and protein metabolism, resulting from genetics, environmental influences and interactions between these. The disease is characterized by insulin resistance, β-cell dysfunction, hepatic glucose overproduction and disordered fat mobilization and storage. The literature on associations between dietary factors and glucose metabolism is inconsistent. One factor behind the discrepant results may be genetic heterogeneity of study populations. Data on nutrient-gene interactions in relation to glucose metabolism are scarce. Thus, investigating high-risk populations and exploring nutrient-gene interactions are essential for improving the understanding of T2D aetiology. Ideally, this information could help to develop prevention programmes that take into account the genetic predisposition to the disease. In this study, associations between measures of glucose metabolism predicting T2D and fatty acids, antioxidative nutrients and fibre were examined in a high-risk population, i.e., in non-diabetic relatives of affected patients. Interactions between the PPARG Pro12Ala polymorphism and fatty acids on glucose metabolism were taken into consideration. This common polymorphism plays an important role in the regulation of glucose metabolism. The inverse associations observed between dietary fibre and insulin resistance are consistent with the prevailing recommendations urging increased intake of fibre to prevent T2D. Beneficial associations observed between the intake of carotenoids and glucose levels stress that a high consumption of vegetables, fruits and berries rich in carotenoids might also play a role in the prevention of T2D. Whether tocopherols have an independent association with glucose metabolism remains questionable. Observed interactions between fatty acids and glucose metabolism suggest that a high intake of palmitic acid is associated with high fasting glucose levels mainly in female Ala allele carriers. Furthermore, the PPARG Pro12Ala polymorphism may modify the metabolic response to dietary marine fat. The beneficial associations of high intake of marine n 3 fatty acids with insulin resistance and glucose levels may be restricted to carriers of the Ala allele. The findings pertain to subjects with a family history of T2D, and the cross-sectional nature of the study precludes inferences about causality. Results nevertheless show that associations of dietary factors with glucose metabolism may be modulated by the genetic makeup of an individual. Additional research is warranted to elucidate the role of probably numerous nutrient-gene interactions, some of which may be sex-specific, in the aetiology of T2D.
Resumo:
Bacteria can utilize multiple sources of carbon for growth, and for pathogenic bacteria like Mycobacterium tuberculosis, this ability is crucial for survival within the host. In addition, phenotypic changes are seen in mycobacteria grown under different carbon sources. In this study, we use Raman spectroscopy to analyze the biochemical components present in M. smegmatis cells when grown in three differently metabolized carbon sources. Our results show that carotenoid biosynthesis is enhanced when M. smegmatis is grown in glucose compared to glycerol and acetate. We demonstrate that this difference is most likely due to transcriptional upregulation of the carotenoid biosynthesis operon (crt) mediated by higher levels of the stress-responsive sigma factor SigF. Moreover, we find that increased SigF and carotenoid levels correlate with greater resistance of glucose-grown cells to oxidative stress. Thus, we demonstrate the use of Raman spectroscopy in unraveling unknown aspects of mycobacterial physiology and describe a novel effect of carbon source variation on mycobacteria.
Resumo:
The objective of this study was to determine the effect of dietary vitamins A, D-3, E, and C on the gonad development, lipid peroxidation, and immune response of yearling rice field eel, Monopterus albus. A 6-wk feeding trial was designed according to an L-16(4(5)) orthogonal design, in which four vitamins, each at four supplementation levels, were arranged. Sixteen diets were mixed with the different vitamin levels and randomly assigned to 16 groups of fish. Increasing dietary vitamin E supplementation level significantly (P <= 0.05) increased the gonadosomatic index and lowered the serum content of malondialdehyde of rice field eel. Increasing dietary vitamin A and C levels also showed similar effect, but the differences were not statistically significant. Serum immunoglobulin M content increased significantly (P <= 0.01) as dietary vitamin C supplementation levels increased. The concentrations of calcium in bones showed significant (P <= 0.05) trend with vitamin D-3 and A supplementation levels, but the bone phosphorus content was not affected by the dietary vitamin levels.
Resumo:
The 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) isoenzymes play a key role in cellular steroid hormone synthesis. Here, a 3 beta-HSD gene homolog,was cloned from Rana grylio virus (RGV), a member of family Iridoviridae. RGV 3 beta-HSD gene has 1068 bp, encoding a 355 aa predicted protein. Transcription analyses showed that RGV 3 beta-HSD gene was transcribed immediate-early during infection from an initiation site 19 nucleotides upstream of the translation start site. Confocal microscopy revealed that the 3 beta-HSD-EGFP fusion protein was exclusively colocalized with the mitochondria marker (pDsRed2-Mito) in EPC cells. Upon morphological observation and MTT assay, it was revealed that overexpression of RGV 3 beta-HSD in EPC cells could apparently suppress RGV-induced cytopathic effect (CPE). The present studies indicate that the RGV immediate-early 3 beta-HSD gene encodes a mitochondria-localized protein, which has a novel role in suppressing virus-induced CPE. All these suggest that RGV 3 beta-HSD might be a protein involved in host-virus interaction. @ 2006 Elsevier Inc. All rights reserved.
Resumo:
The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isomerase. In Chapter two of this thesis it was found that the MCRA-specifying gene is not involved in CLA production in B. breve NCFB 2258, and that this gene specifies an oleate hydratase involved in the conversion of oleic acid into 10-hydroxystearic acid. Prebiotics are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating growth and/or activity of one or a limited number of bacteria in the colon. Key to the development of such novel prebiotics is to understand which carbohydrates support growth of bifidobacteria and how such carbohydrates are metabolised. In Chapter 3 of this thesis we describe the identification and characterisation of two neighbouring gene clusters involved in the metabolism of raffinose-containing carbohydrates (plus related carbohydrate melibiose) and melezitose by Bifidobacterium breve UCC2003. The fourth chapter of this thesis describes the analysis of transcriptional regulation of the raf and mel clusters. In the final experimental chapter two putative rep genes, designated repA7017 and repB7017, are identified on the megaplasmid pBb7017 of B. breve JCM 7017, the first bifidobacterial megaplasmid to be reported. One of these, repA7017, was subjected to an in-depth characterisation. The work described in this thesis has resulted in an improved understanding of bifidobacterial fatty acid and carbohydrate metabolism, Furthermore, attempts were made to develop novel genetic tools.