988 resultados para 2D hydrodynamic model
Resumo:
A large SAV bed in upper Chesapeake Bay has experienced several abrupt shifts over the past half-century, beginning with near-complete loss after a record-breaking flood in 1972, followed by an unexpected, rapid resurgence in the early 2000’s, then partial decline in 2011 following another major flood event. Together, these trends and events provide a unique opportunity to study a recovering SAV ecosystem from several different perspectives. First, I analyzed and synthesized existing time series datasets to make inferences about what factors prompted the recovery. Next, I analyzed existing datasets, together with field samples and a simple hydrodynamic model to investigate mechanisms of SAV bed loss and resilience to storm events. Finally, I conducted field deployments and experiments to explore how the bed affects internal physical and biogeochemical processes and what implications those effects have for the dynamics of the system. I found that modest reductions in nutrient loading, coupled with several consecutive dry years likely facilitated the SAV resurgence. Furthermore, positive feedback processes may have played a role in the sudden nature of the recovery because they could have reinforced the state of the bed before and after the abrupt shift. I also found that scour and poor water clarity associated with sediment deposition during the 2011 flood event were mechanisms of plant loss. However, interactions between the bed, water flow, and waves served as mechanisms of resilience because these processes created favorable growing conditions (i.e., clear water, low flow velocities) in the inner core of the bed. Finally, I found that that interactions between physical and biogeochemical processes led to low nutrient concentrations inside the bed relative to outside the bed, which created conditions that precluded algal growth and reinforced vascular plant dominance. This work demonstrates that positive feedbacks play a central role in SAV resilience to both chronic eutrophication as well as acute storm events. Furthermore, I show that analysis of long-term ecological monitoring data, together with field measurements and experiments, can be an effective approach for understanding the mechanisms underlying ecosystem dynamics.
Resumo:
One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.
Resumo:
Markov Chain analysis was recently proposed to assess the time scales and preferential pathways into biological or physical networks by computing residence time, first passage time, rates of transfer between nodes and number of passages in a node. We propose to adapt an algorithm already published for simple systems to physical systems described with a high resolution hydrodynamic model. The method is applied to bays and estuaries on the Eastern Coast of Canada for their interest in shellfish aquaculture. Current velocities have been computed by using a 2 dimensional grid of elements and circulation patterns were summarized by averaging Eulerian flows between adjacent elements. Flows and volumes allow computing probabilities of transition between elements and to assess the average time needed by virtual particles to move from one element to another, the rate of transfer between two elements, and the average residence time of each system. We also combined transfer rates and times to assess the main pathways of virtual particles released in farmed areas and the potential influence of farmed areas on other areas. We suggest that Markov chain is complementary to other sets of ecological indicators proposed to analyse the interactions between farmed areas - e.g. depletion index, carrying capacity assessment. Markov Chain has several advantages with respect to the estimation of connectivity between pair of sites. It makes possible to estimate transfer rates and times at once in a very quick and efficient way, without the need to perform long term simulations of particle or tracer concentration.
Resumo:
In this thesis we present a mathematical formulation of the interaction between microorganisms such as bacteria or amoebae and chemicals, often produced by the organisms themselves. This interaction is called chemotaxis and leads to cellular aggregation. We derive some models to describe chemotaxis. The first is the pioneristic Keller-Segel parabolic-parabolic model and it is derived by two different frameworks: a macroscopic perspective and a microscopic perspective, in which we start with a stochastic differential equation and we perform a mean-field approximation. This parabolic model may be generalized by the introduction of a degenerate diffusion parameter, which depends on the density itself via a power law. Then we derive a model for chemotaxis based on Cattaneo's law of heat propagation with finite speed, which is a hyperbolic model. The last model proposed here is a hydrodynamic model, which takes into account the inertia of the system by a friction force. In the limit of strong friction, the model reduces to the parabolic model, whereas in the limit of weak friction, we recover a hyperbolic model. Finally, we analyze the instability condition, which is the condition that leads to aggregation, and we describe the different kinds of aggregates we may obtain: the parabolic models lead to clusters or peaks whereas the hyperbolic models lead to the formation of network patterns or filaments. Moreover, we discuss the analogy between bacterial colonies and self gravitating systems by comparing the chemotactic collapse and the gravitational collapse (Jeans instability).
Resumo:
The present thesis focuses on the on-fault slip distribution of large earthquakes in the framework of tsunami hazard assessment and tsunami warning improvement. It is widely known that ruptures on seismic faults are strongly heterogeneous. In the case of tsunamigenic earthquakes, the slip heterogeneity strongly influences the spatial distribution of the largest tsunami effects along the nearest coastlines. Unfortunately, after an earthquake occurs, the so-called finite-fault models (FFM) describing the coseismic on-fault slip pattern becomes available over time scales that are incompatible with early tsunami warning purposes, especially in the near field. Our work aims to characterize the slip heterogeneity in a fast, but still suitable way. Using finite-fault models to build a starting dataset of seismic events, the characteristics of the fault planes are studied with respect to the magnitude. The patterns of the slip distribution on the rupture plane, analysed with a cluster identification algorithm, reveal a preferential single-asperity representation that can be approximated by a two-dimensional Gaussian slip distribution (2D GD). The goodness of the 2D GD model is compared to other distributions used in literature and its ability to represent the slip heterogeneity in the form of the main asperity is proven. The magnitude dependence of the 2D GD parameters is investigated and turns out to be of primary importance from an early warning perspective. The Gaussian model is applied to the 16 September 2015 Illapel, Chile, earthquake and used to compute early tsunami predictions that are satisfactorily compared with the available observations. The fast computation of the 2D GD and its suitability in representing the slip complexity of the seismic source make it a useful tool for the tsunami early warning assessments, especially for what concerns the near field.
Resumo:
This comprehensive study explores the intricate world of 3D printing, with a focus on Fused Deposition Modelling (FDM). It sheds light on the critical factors that influence the quality and mechanical properties of 3D printed objects. Using an optical microscope with 40X magnification, the shapes of the printed beads is correlated to specific slicing parameters, resulting in a 2D parametric model. This mathematical model, derived from real samples, serves as a tool to predict general mechanical behaviour, bridging the gap between theory and practice in FDM printing. The study begins by emphasising the importance of geometric parameters such as layer height, line width and filament tolerance on the final printed bead geometry and the resulting theoretical effect on mechanical properties. The introduction of VPratio parameter (ratio between the area of the voids and the area occupied by printed material) allows the quantification of the variation of geometric slicing parameters on the improvement or reduction of mechanical properties. The study also addresses the effect of overhang and the role of filament diameter tolerances. The research continues with the introduction of 3D FEM (Finite Element Analysis) models based on the RVE (Representative Volume Element) to verify the results obtained from the 2D model and to analyse other aspects that affect mechanical properties and not directly observable with the 2D model. The study also proposes a model for the examination of 3D printed infill structures, introducing also an innovative methodology called “double RVE” which speeds up the calculation of mechanical properties and is also more computationally efficient. Finally, the limitations of the RVE model are shown and a so-called Hybrid RVE-based model is created to overcome the limitations and inaccuracy of the conventional RVE model and homogenization procedure on some printed geometries.
Resumo:
This thesis aims to understand the behavior of a low-rise unreinforced masonry building (URM), the typical residential house in the Netherlands, when subjected to low-intensity earthquakes. In fact, in the last decades, the Groningen region was hit by several shallow earthquakes caused by the extraction of natural gas. In particular, the focus is addressed to the internal non-structural walls and to their interaction with the structural parts of the building. A simple and cost-efficient 2D FEM model is developed, focused on the interfaces representing mortar layers that are present between the non-structural walls and the rest of the structure. As a reference for geometries and materials, it has been taken into consideration a prototype that was built in full-scale at the EUCENTRE laboratory of Pavia (Italy). Firstly, a quasi-static analysis is performed by gradually applying a prescribed displacement on the roof floor of the structure. Sensitivity analyses are conducted on some key parameters characterizing mortar. This analysis allows for the calibration of their values and the evaluation of the reliability of the model. Successively, a transient analysis is performed to effectively subject the model to a seismic action and hence also evaluate the mechanical response of the building over time. Moreover, it was possible to compare the results of this analysis with the displacements recorded in the experimental tests by creating a model representing the entire considered structure. As a result, some conditions for the model calibration are defined. The reliability of the model is then confirmed by both the reasonable results obtained from the sensitivity analysis and the compatibility of the values obtained for the top displacement of the roof floor of the experimental test, and the same value acquired from the structural model.
Resumo:
Details are given of the development and application of a 2D depth-integrated, conformal boundary-fitted, curvilinear model for predicting the depth-mean velocity field and the spatial concentration distribution in estuarine and coastal waters. A numerical method for conformal mesh generation, based on a boundary integral equation formulation, has been developed. By this method a general polygonal region with curved edges can be mapped onto a regular polygonal region with the same number of horizontal and vertical straight edges and a multiply connected region can be mapped onto a regular region with the same connectivity. A stretching transformation on the conformally generated mesh has also been used to provide greater detail where it is needed close to the coast, with larger mesh sizes further offshore, thereby minimizing the computing effort whilst maximizing accuracy. The curvilinear hydrodynamic and solute model has been developed based on a robust rectilinear model. The hydrodynamic equations are approximated using the ADI finite difference scheme with a staggered grid and the solute transport equation is approximated using a modified QUICK scheme. Three numerical examples have been chosen to test the curvilinear model, with an emphasis placed on complex practical applications
Resumo:
Context. About 2/3 of the Be stars present the so-called V/R variations, a phenomenon characterized by the quasi-cyclic variation in the ratio between the violet and red emission peaks of the HI emission lines. These variations are generally explained by global oscillations in the circumstellar disk forming a one-armed spiral density pattern that precesses around the star with a period of a few years. Aims. This paper presents self-consistent models of polarimetric, photometric, spectrophotometric, and interferometric observations of the classical Be star zeta Tauri. The primary goal is to conduct a critical quantitative test of the global oscillation scenario. Methods. Detailed three-dimensional, NLTE radiative transfer calculations were carried out using the radiative transfer code HDUST. The most up-to-date research on Be stars was used as input for the code in order to include a physically realistic description for the central star and the circumstellar disk. The model adopts a rotationally deformed, gravity darkened central star, surrounded by a disk whose unperturbed state is given by a steady-state viscous decretion disk model. It is further assumed that this disk is in vertical hydrostatic equilibrium. Results. By adopting a viscous decretion disk model for zeta Tauri and a rigorous solution of the radiative transfer, a very good fit of the time-average properties of the disk was obtained. This provides strong theoretical evidence that the viscous decretion disk model is the mechanism responsible for disk formation. The global oscillation model successfully fitted spatially resolved VLTI/AMBER observations and the temporal V/R variations in the H alpha and Br gamma lines. This result convincingly demonstrates that the oscillation pattern in the disk is a one-armed spiral. Possible model shortcomings, as well as suggestions for future improvements, are also discussed.
Resumo:
In this study, twenty hydroxylated and acetoxylated 3-phenylcoumarin derivatives were evaluated as inhibitors of immune complex-stimulated neutrophil oxidative metabolism and possible modulators of the inflammatory tissue damage found in type III hypersensitivity reactions. By using lucigenin- and luminol-enhanced chemiluminescence assays (CL-luc and CL-lum, respectively), we found that the 6,7-dihydroxylated and 6,7-diacetoxylated 3-phenylcoumarin derivatives were the most effective inhibitors. Different structural features of the other compounds determined CL-luc and/or CL-lum inhibition. The 2D-QSAR analysis suggested the importance of hydrophobic contributions to explain these effects. In addition, a statistically significant 3D-QSAR model built applying GRIND descriptors allowed us to propose a virtual receptor site considering pharmacophoric regions and mutual distances. Furthermore, the 3-phenylcoumarins studied were not toxic to neutrophils under the assessed conditions. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.
Resumo:
The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of observed emergences, we also ascertain the sensitivity of global cycle properties, such as the strength of the dipole moment and timing of polarity reversal, to distinct realizations of BMR emergence, and on this basis argue that this stochasticity represents a primary source of uncertainty for predicting solar cycle characteristics.
Resumo:
We investigate the critical behavior of a stochastic lattice model describing a predator-prey system. By means of Monte Carlo procedure we simulate the model defined on a regular square lattice and determine the threshold of species coexistence, that is, the critical phase boundaries related to the transition between an active state, where both species coexist and an absorbing state where one of the species is extinct. A finite size scaling analysis is employed to determine the order parameter, order parameter fluctuations, correlation length and the critical exponents. Our numerical results for the critical exponents agree with those of the directed percolation universality class. We also check the validity of the hyperscaling relation and present the data collapse curves.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).