904 resultados para 250107 Electrochemistry
Resumo:
Applying impedance spectrum technique to liquid/liquid interfacial electrochemistry, we present the theoretical expression of the liquid/liquid interfacial impedance in the four - electrode electrolytic cell measured by alternating current impedance method. The influence of the electrolytic cell parameters and input passage parameters of the impedance apparatus on impedance spectrum curves are theoretically studied.
Resumo:
The direct electrochemistry of cytochrome c was studied at nanometer-sized rare earth element dioxide particle-modified gold electrodes. It was demonstrated that rare earth element oxides can accelerate the electrochemical reaction of cytochrome c and the reversibility of the electrochemical reaction of cytochrome c was related to the size of rare earth element oxide particles.
Resumo:
The gold electrodes modified with 2-picolinic acid , nicotinic acid, iso-nicotinic or thiophene were prepared using membrane transfer method, The electrochemistry of di-mu-oxodimanganese 2,2'-bipyridine complex was studied in the acetic acid buffer solution at different modified gold electrodes, It was found that the modifiers which can promote the electrochemical reaction of the complex should be of at least two functional groups, One group can be bound to the electrode surface and the other can form electron transfer pathway between the modifier and the complex through sal; bridge or hydrogen bond, In addition, the mechanism of the electrochemical reaction was discussed.
Resumo:
Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.
Resumo:
A cryo-hydrogel membrane (CHM) immobilized at a glassy carbon (GC) electrode is reported for the direct electron transfer of redox proteins. The most attractive characteristics of this CHM were its hydrophilic micro-environment for incorporated proteins to retain their activities, its high ability for protection against interference of denatured and adsorbed proteins at the electrode, its potential applications for various proteins or enzymes, as well as its high mechanical strength and thermal stability. A clear well developed and stable redox wave was obtained for commercially available horse heart myoglobin without further purification, giving a peak to peak separation Delta E(p) = 93 mV at 5 mV s(-1) and the formal electrode potential E(0)' = -0.158 V (vs. Ag/AgCl). The formal heterogeneous electron transfer rate constant was calculated as k(0)' = 5.7 X 10(-4) cm s(-1) at pH 6.5, showing rapid electron transfer was achieved. The pH controlled conformational equilibria, acid state --> natural state --> basic I state --> basic II state, of myoglobin at the CHM GC electrode in the pH range 0-13.8 were also observed and are discussed in detail.
Resumo:
A simple, convenient and versatile thin layer reflection Fourier transform IR microspectroelectrochemical (FTIRMSEC) cell has been described and characterized. Electrochemistry and in situ FTIR microspectroscopy were studied by using the hexacyanoferrate redox couple in aqueous sulphate solution, indicating that this type of cell is characteristic of both micro- or ultramicroelectrode and thin layer spectroelectrochemistry. Furthermore, the application of this FTIRMSEC cell to IR for characterization of the products of electrochemical reactions was carried out for the oxidation of (mesotetraphenylporphinato)manganese(III) perchlorate in dichloromethane + tetrabutylammonium perchlorate solution. Finally, the advantages and problems of this type of cell compared with a conventional optically transparent thin layer FTIR spectroelectrochemical cell were discussed.
Resumo:
A sensitive high-performance liquid chromatographic method has been developed for the quantitative determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN). The method utilizes reverse-phase chromatography/amperometric detection with a glassy carbon electrode dispersed with alpha-arumina particles as the working electrode, on which the oxidation of AM and AAN was greatly improved compared with that on a bare glassy carbon electrode. As a result, the detection limit was as low as 1.4 ng for AM and 0.8 ng for AAN, and the calibration plots for the above compounds have wide linear ranges from 100 ng/mL to 100 mu g/mL and 60 ng/mL to 80 mu g/mL (for AM and AAN, respectively). The above method was applied for the detection of these materials in human urine with satisfactory results.
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
In the presence of OH- anions, electrochemical redox reactions of cobalt tetraphenylporphyrin (TPP)Co were investigated in EtCl2 solution by thin-layer cyclic voltammetry and spectroelectrochemistry. In the pressence of OH-, OH- was axially coordinated to
Resumo:
The transfer behavior of the heteropoly anion [H3PW11O39]4- and the isopoly anion [H2W12O39]4- across the water/nitrobenzene interface was investigated by cyclic voltammetry and chronopotentiometry with linear current scanning. The transfer processes were
Resumo:
Methyl-, ethyl-, propyl- and n-butyl cobalt porphyrins were electrochemically synthesized and studied byIn-situ cyclic voltammetry and UV-Visible spectro-el ectrochemistry. Rate constants for the alkylations were determined. It was found that the four alkyl saturated tetraphenylchlorin cobalt complexes were formed after electrochemical reduction of the alkyl cobalt porphyrins.
Resumo:
In situ monitoring of conductivity and potential response of conductive polymers during electrochemical process had been described. A renewable carbon fibre array ring-glassy carbon disk electrode was used for this purpose. Poly(3-methylthiophene) and polythiophene were investigated with this method, and some 5 orders in magnitude of conductivity changes were observed during the electrochemical redox process.
Resumo:
A monolayer of 1:12 phosphomolybdic anion (PMo_(12)) was modified electrochemically on a glassy carbon electrode and its electrochemical behavior was studied with cyclic voltammetry (CV). It is shown that PMo_(12) film is adsoibed strongly on the surface of glassy carbon electrodes, H~+ ions in the solution plays an important role in the electrochemical processes of PMo_(12) film modified electrodes, whereas other anions, such as Cl~-, NO_3~-, SO_4~(2-), ClO_4~- and PO_4~(3-) etc., do not take par...