998 resultados para 2,4-Xylidine (2,4-dimethyl-aniline)
Resumo:
he region of Ribeirão Preto, São Paulo State, Brazil, is located over recharge area of the Guarany aquifer, the most important source of groundwater in the South Central region of the country. This region is also the most important sugarcane producing area of the country which produces a large amount of the ethanol. This study was conducted to determine the potential risk of herbicide groundwater contamination. The leaching risk potential of herbicides to groundwater was conducted using the weather simulator ?Weather Generator? (WGEN) coupled with the model ?Chemical Movement Trough Layered Soils? (CMLS94). The following herbicides were evaluated in clayey and sandy soils (Typic Haplorthox and Typic Quartzipsamment soils) found in the region: ametryn (N-ethyl-N\'-(1- methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine), atrazine (6-chloro-N-ethyl-N\'-(1-methylethyl)-1,3,5-triazine- 2,4-diamine), clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone), diuron (3,4-dichlorophenyl)- N,N-dimethylurea), halosulfuron (3-chloro-5-[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl], hexazinone (3- cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4 (1H,3H)-dione), imazapic ((±)-2-[4,5-dihydro-4-methyl-4- (1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid), imazapyr ((±)-2-[4,5-dihydro-4-methyl- 4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-pyridinecarboxylic acid), MCPA (4-chloro-2-methylphenoxy)acetic acid), metribuzin (4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one), MSMA (Amonosodium salt of MAA), paraquat (1,1\'-dimethyl-4,4\'-bipyridinium ion), pendimethalin (N-(1-ethylpropyl)-3,4-dimethyl-2,6- dinitrobenzenamine), picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), simazine (6-chloro-N,N\'-diethyl- 1,3,5-triazine-2,4-diamine), sulfentrazone [N-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H- 1,2,4-triazol-1-yl]phenyl]methanesulfonamide], and tebuthiuron [N-[5-(1,1-dimethylethyl)-1,3,4-thiadiazol-2-yl]-N,N\'- dimethylurea]. Results obtained by our simulation study have shown that the herbicides picloram, tebuthiuron, and metribuzin have the highest leaching potential, in either sandy or clayey soils, with picloram reaching the root zone of sugarcane at 0.6m in less than 150 days.
Resumo:
Clomazone (2-(2-chlorophenyl) methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate of 700 g/ha. The presence of this chemical in the water may affect microorganisms responsible for the decomposition of organic matter. Thus, a disturbe in the trophic chain sustained by the decompositors could happen. In the present work the decomposition rate of organic matter (Typha latifolia) exposed to several concentrations of a clomazone formulation: 0 (control), 25.0, 62.0, 156.0, 390.0 and 976.0mg/L on the basis of the active ingredient was evaluated. Five litter bags containing about 3.0g of pieces of T. latifolia leaves wereplaced in aquariums with 15 of reconstituted water. In cach aquarium were added 500g of sediment from the same place of the plant collection, as a source of decompositors microorganisms. The results relative tothe control, showed that the decomposition rate in the highest and lowest dose was reduced in 50.05 and 1,28%, respectively, after 80 days.
Resumo:
The duckweed Lemna valdiviana is commonly founded colonizing small shallow waters (lakes on the lowland in south Brazil. This organism may have been affected by herbicide input into lakes from aerial application and/or drainage office paddy fields. Clomazone (2- (2-chlorophenyl) methyl-4.4-dimethyl-3-isoxazolidinone) is one of the herbicides more fiequentely used as post-emergence in rice paddies. For this work assays were carried as EC50(96h) semi-statics with aseptic culture. The sterile fronds were abtained from material harvest on the paddy fields, and the concentration of Clomazone ranged from 14.0 to 229.0 mg/l. two procedures were considered: diluted in water and sprayed applicated Clomazone. The observed phytotoxic effects were evaluated by growth rate (kt), duplication time (Td), frond yield, plant yield, mortality, chlorophyll a and b and protochlorophyll concentration. The EC50 values obtained to sprayed Clomazone (Kt=31.7; Td=31.9) were significantly small than to diluted Clomazone (Kt=46.4; td=47.3). These dadta suggest that aerial route is more hazardous than diluted procedure. Presence of chlorotic, necrotic, abnormal and died frond were common at the 114.0 and 229.0 mg/l treatment. Recuperation test corroborated the evidence that the sprayed procedure were more deleterious and L. valdiviana doesn't recovery his reproductive ability at the 114.0 and 229.0 mg/l treatment.
Resumo:
Clomazone (2-(2-chlorophenyl)methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate(AR).of 700g/ha. The herbicide input into the aquatic ecosystem may occur by aerial application or water drainage. The presence of this chemical in the water may affect non-target organisms leading to impairments in the aquatic food chain. Studies were conducted in this work to evaluate the risk of Clomazone using the estimated mean affective concentration (EC50) for the microalgae Selenastrum capricornutum(96h), the duckweed Lemna valdiviana(96h) and the crustacean Daphnia similis(48h). The EC50 values were 11.2; 31.7 and 13.8 mg/l, respectively. According to the obtained data, and considering a direct input of the herbicide in a 10cm column water, the estimated maximum application rate that doesn't cause acute effects is 5.3 AR for S. capricornutum, 6.5 AR for D. similis and 15.0 AR for L. valdiviana. The estimated maximum application rate that doesn't cause chronic effects is 2.0 AR for D. similis, 1.6 AR for S. capricornutum and 4.5 AR for L. valviana.
Resumo:
Background and purpose: The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. Experimental approach: The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ET(B) agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ET(A) or ET(B) antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks` chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. Key results: The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ET(B) receptor blockade. Finally, we observed higher levels of ET(A) receptor in the heart and mesenteric artery and a reduction of ET(B) receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. Conclusions and implications: Increased vascular reactivity to ET-1 and altered protein levels of ET(A) and ET(B) receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.
Resumo:
The stereoselectivity of hydroxylation of alkyltetrahydropyran-2-ols (or their biological equivalents) in the formation of stereoisomers of 2,8-dimethyl-1,7-dioxaspiro[5.5]undecanes in male Bactrocera cucumis has been investigated. Racemic, (6R)-, and (6S)-6-methyl-2-[5-H-2(1)]-n-pentyltetrahydropyran-2-ol was administered under an [O-18(2)]-enriched atmosphere. The stereochemistry and isotopic composition of generated spiroacetals were monitored by combined enantioselective GC-MS. The monooxygenase(s) strongly prefers the (6S)-substrate and furnishes predominantly the (S)-alcohol and then the (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane. The (2S,6S,8R) and (2R,6S,8S) (E,Z)-isomers appear to be derived in vivo predominantly from (R)-hydroxylation of the (6S)-tetrahydropyranol.
Resumo:
Poly-L-lactide (PLLA) is a widely used sustainable and biodegradable alternative to replace synthetic non-degradable plastic materials in the packaging industry. Conversely, its processing properties are not always optimal, e.g. insufficient melt strength at higher temperatures (necessary in extrusion coating processes). This thesis reports on research to improve properties of commercial PLLA grade (3051D from NatureWorks), to satisfy and extend end-use applications, such as food packaging by blending with modified PLLA. Adjustment of the processability by chain branching of commercial poly-L-lactide initiated by peroxide was evaluated. Several well-defined branched structures with four arms (sPLLA) were synthesized using pentaerythritol as a tetra-functional initiator. Finally, several block copolymers consisting of polyethylene glycol and PLLA (i.e. PEGLA) were produced to obtain a well extruded material with improved heat sealing properties. Reactive extrusion of poly-L-lactide was carried out in the presence of 0.1, 0.3 and 0.5 wt% of various peroxides [tert-butyl-peroxybenzoate (TBPB), 2,5-dimethyl-2,5-(tert-butylperoxy)-hexane (Lupersol 101; LOL1) and benzoyl peroxide (BPO)] at 190C. The peroxide-treated PLLAs showed increased complex viscosity and storage modulus at lower frequencies, indicating the formation of branched/cross linked architectures. The material property changes were dependent on the peroxide, and the used peroxide concentration. Gel fraction analysis showed that the peroxides, afforded different gel contents, and especially 0.5 wt% peroxide, produced both an extremely high molar mass, and a cross linked structure, not perhaps well suited for e.g. further use in a blending step. The thermal behavior was somewhat unexpected as the materials prepared with 0.5 wt% peroxide showed the highest ability for crystallization and cold crystallization, despite substantial cross linking. The peroxide-modified PLLA, i.e. PLLA melt extruded with 0.3 wt% of TBPB and LOL1 and 0.5 wt% BPO was added to linear PLLA in ratios of 5, 15 and 30 wt%. All blends showed increased zero shear viscosity, elastic nature (storage modulus) and shear sensitivity. All blends remained amorphous, though the ability of annealing was improved slightly. Extrusion coating on paperboard was conducted with PLLA, and peroxide-modified PLLA blends (90:10). All blends were processable, but only PLLA with 0.3 wt% of LOL1 afforded a smooth high quality surface with improved line speed. Adhesion levels between fiber and plastic, as well as heat seal performance were marginally reduced compared with pure 3051D. The water vapor transmission measurements (WVTR) of the blends containing LOL1 showed acceptable levels, only slightly lower than for comparable PLLA 3051D. A series of four-arm star-shaped poly-L-lactide (sPLLA) with different branch length was synthesized by ring opening polymerization (ROP) of L-lactide using pentaerythritol as initiator and stannous octoate as catalyst. The star-shaped polymers were further blended with its linear resin and studied for their melt flow and thermal properties. Blends containing 30 wt% of sPLLA with low molecular weight (30 wt%; Mwtotal: 2500 g mol-1 and 15000 g mol-1) showed lower zero shear viscosity and significantly increased shear thinning, while at the same time slightly increased crystallization of the blend. However, the amount of crystallization increased significantly with the higher molecular weight sPLLA, therefore the star-shaped structure may play a role as nucleating agent. PLLA-polyethylene glycol–PLLA triblock copolymers (PEGLA) with different PLLA block length were synthesized and their applicability as blends with linear PLLA (3051D NatureWorks) was investigated with the intention of improving heat-seal and adhesion properties of extrusion-coated paperboard. PLLA-PEG-PLLA was obtained by ring opening polymerization (ROP) of L-lactide using PEG (molecular weight 6000 g mol-1) as an initiator, and stannous octoate as catalyst. The structures of the PEGLAs were characterized by proton nuclear magnetic resonance spectroscopy (1H-NMR). The melt flow and thermal properties of all PEGLAs and their blends were evaluated using dynamic rheology, and differential scanning calorimeter (DSC). All blends containing 30 wt% of PEGLAs showed slightly higher zero shear viscosity, higher shear thinning and increased melt elasticity (based on tan delta). Nevertheless, no significant changes in thermal properties were distinguished. High molecular weight PEGLAs were used in extrusion coating line with 3051D without problems.
Resumo:
Methoxypyrazines are aroma active compounds found in many wine varietals. These compounds can be of either grape-derived nature or can be introduced into wines via Coccinellidae beetles. Regardless of their origin, methoxypyrazines can have either a beneficial role for wine quality, contributing to the specificity of certain wine varietals (Cabernet sauvignon, Cabernet franc, Sauvignon blanc) or a detrimental role, particularly at higher concentrations, resulting in overpowering green, unripe and herbaceous notes. When methoxypyrazines of exogenous nature are responsible for these unpleasant characteristics, wines are considered to be affected by what is generally known as Ladybug taint (LBT). This is work is a collection of studies seeking to create a sensitive analytical method for the detection and quantification of methoxypyrazines in wines; to investigate the role of different Coccinellidae species in the tainting of wines with LBT and identify the main compounds in ladybug tainted wines responsible for the typical green herbaceous characteristics; to determine the human detection threshold of 2,5-dimethyl-3-methoxypyrazine in wines as well as investigate its contribution to the aroma of wines; and finally to survey methoxypyrazine concentrations in a large set of wines from around the world. In the first study, an analytical method for the detection and quantitation of methoxypyrazines in wines was created and validated. The method employs multidimensional Gas Chromatography coupled with Mass Spectrometry to detect four different methoxypyrazines (2,5-dimethyl-3-methoxypyrazine, isobutyl methoxypyrazine, secbutyl methoxypyrazine and isopropyl methoxypyrazines) in wine. The low limits of detection for the compounds of interest, improved separation and isolation capabilities, good validation data, as well as the ease of use recommend this method as a good alternative to the existing analytical methods for methoxypyrazine detection in wine. In the second study the capacity of two Coccinellidae species, found in many wine regions – Harmonia axyridis and Coccinella septempunctata - to taint wines is evaluated. Coccinella septempunctata is shown to be as capable as causing LBT in wines as Harmonia axyridis. Dimethyl methoxypyrazine, previously thought to be of exogenous nature only (from Coccinellidae haemolymph), is also detected in control (untainted) wines. The main odor active compounds in LBT wines are investigated through Aroma Extract Dilution Assay. These compounds are identified as isopropyl methoxypyrazine, sec- and iso- butyl methoxypyrazine. In the third study, the human detection threshold for dimethyl methoxypyrazine in wine is established to be 31 ng/L in the orthonasal modality and 70 ng/L retronasally. After wines spiked with various amounts of dimethyl methoxypyrazine are evaluated sensorally, dimethyl methoxypyrazine causes significant detrimental effects to wine aroma at a concentration of 120 ng/L. The final study examines methoxypyrazine (dimethyl methoxypyrazine, isopropyl methoxypyrazine, secbutyl methoxypyrazine and isobutyl methoxypyrazine) concentrations in 187 wines from around the world. Dimethyl methoxypyrazine is detected in the majority of the red wines tested. Data are interpreted through statistical analyses. A new measure for predicting greenness/herbaceousness in wines - methoxypyrazine “total impact factor” is proposed.
Synthesis, properties and characterization of N-Alkyl substituted b-Diketiminato copper(I) Complexes
Resumo:
Le ligand nacnacxylH (xyl = C6Me2H3) et les ligands dikétimines N-alkyle substitués (nacnacCH(Me)PhH, nacnacBnH and nacnaciPrH) ont été préparés avec de bons rendements à l’exception du nacnaciPrH (23%) en utilisant un protocole en une étape et à l’aide d’un montage Dean-Stark. La réaction du S,S-nacnacCH(Me)PhH et du nacnacBnH avec le nBuLi dans le THF conduit au S,S-nacnacCH(Me)PhLi(THF) et au nacnacBnLi(THF). Les tentatives de bromation de ces composés par le N-bromosuccinimide conduisent plutôt aux ligands S,S-succnacnacCH(Me)PhH et succnacnacBnH (succ = succinimido) substitués par un groupement succinimido sur le carbone La chloration par le N-chlorosuccinimide conduit au produit désiré, mais avec des impuretés. La réaction de ces ligands avec le CuOtBu (ou bien MesCu, où Mes = C6Me3H2, et une quantité catalytique de CuOtBu) en présence de bases de Lewis donne les (nacnacxylCu)2(-toluène), nacnacxylCuCNC6H3(Me)2, nacnacCH(Me)PhCuL (L = PPh3, PMe3, CNC6H3(Me)2, DMAP, lutidine, Py, MeCN), nacnacBnCuL (L = PPh3, CNC6H3(Me)2, styrène, trans-stilbene, phenylvinylether, acrylonitrile, diphenylacetylène), nacnaciPrCuL (L = PPh3, CNC6H3(Me)2, MeCN) et le succnacnacCH(Me)PhCuL (PPh3, CNC6H3(Me)2, pyridine). Tous ces complexes sont jaunes et sensibles à l’air et à l’humidité. En l’absence de fortes bases de Lewis, on n’observe pas de réaction entre les précurseurs de cuivre et les ligands N-alkyle substitués. Les études RMN des complexes dans le C6D6 ne présentent pas de complexe de toluène mais un mélange à l’équilibre du (nacnacxylCu)2(-C6D6) et nacnacxylCu(C6D6) dans une proportion de 2 pour 1. Alors que l’addition de plus de cinquante équivalents soit de THF, soit de toluène n’induit aucun changement des spectres RMN, l’addition de 2 équivalents de MeCN conduit instantanément au complexe nacnacxylCu(MeCN). De plus, le (nacnacxylylCu)2(-C6D6) ne se coordone ni ne réagit avec le N2O, même après avoir été chauffé à 60°C pendant treize jours. En présence de DPA (diphenylacétylène), la réaction du nacnacBnH avec le CuOtBu conduit au dimère ponté (nacnacBnCu)2(µ-DPA). L’addition d’un excès de DPA (10-12 équivalents) transforme le dimère ponté en complexe lié en position terminale nacnacBnCuDPA. Les nacnacRH (R = CH(Me)Ph et i-Pr) ne forment pas de complexe ni avec les oléfines ni avec le DPA. Une réactivité similaire a été observée avec les complexes de nacnacCH(Me)PhCu(NCMe) et nacnaci-PrCu(NCMe). Tandis que le complexe lié en position terminale par MeCN a été isolé et caractérisé, l’équilibre en solution nous laisse suspecter la formation d’un complexe d’acétonitrile ponté. Des études de réactivité comparatives ont été menées sur quelques complexes de cuivre. La Morpholine ne réagit pas avec le nacnacBnCu(acrylonitrile) contrairement à l’acrylonitrile libre. L’expérience de l’échange d’oléfine montre que l’acrylonitrile (une oléfine électro-attractrice) se lie plus fortement que les autres oléfines, mettant ainsi en évidence l’importance de la rétrodonation face à la donation La rétrodonation est cependant faible comparée aux autres complexes de styrène structurellement caractérisés. Les complexes nacnacCH(Me)PhCuL (L = PPh3 et MeCN) ont été employés dans la cyclopropanation catalytique du styrène et dans l’addition conjuguée du ZnEt2 sur la 2-cyclohexénone, mais les résultats indiquent que le ligand dikétimine est éliminé avant son entrée dans le cycle catalytique. Par conséquent, il n’y a pas d’induction chirale. Les complexes tétra coordinées de cuivre avec les nacnacRCu(phen) (R = Bn, CH(Me)Ph et Phen = 1,10-phenanthroline, 2-Mes-1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline (dmp) et 2,9-diphenyl-1,10-phenanthroline (dpp)) ont été synthétisés. Ces complexes sont d’une intense couleur bleue et des interactions d’empilement entre l’un des cycles phényle des ligands nacnac et la phénanthroline ont été observées dans les structures à l’état solide. Les mesures en absorption UV-visible ont été effectuées dans le toluène et les bandes MLCT sont déplacées vers le rouge par rapport à celles des complexes de cuivre et bisphénanthroline. Tous ces composés émettent à l’état solide mais les complexes 1,10-phenanthroline et 2-Mes-1,10-phenanthroline n’émettent pas en solution. Pour renforcer les interactions d’empilement , les nouveaux ligands nacnacRH (R = CH2C6H2(OMe)3, CH2C6F5) et leurs complexes de cuivre respectifs ont été préparés avec du dmp et dpp. Afin de permettre la comparaison, le nacnaciBuCu(dmp) a été synthétisé. Alors que les complexes dmp montrent une augmentation des interactions intramoléculaires - avec les substituants phényle du ligand dikétimine et de la phénanthroline, les complexes dpp ne révèlent pas de telles interactions. Les complexes perfluorés montrent, en absorption et en émission, un déplacement significatif vers le bleu, alors que les complexes substitués par un groupements isobutyle présentent des transitions déplacées vers le rouge. Alors que les intensités de luminescence et les durées de vie sont faibles, les déplacements réduits de Stokes et les pics étroits de luminescence comparables indiquent une réduction des distorsions de l’état excité.
Resumo:
The cobalt(III) complex, [Co(L)2(N3)2]2(ClO4)2, L being a Schiff base N-[phenyl(pyridin-2-yl)methylene]aniline has been synthesized and the crystal structure determined using X-ray crystallography. The complex crystallizes in triclinic system, space group P-1 with unit cell parameters a=10.9367(9) , b=18.0817(17) , c=20.1629(16) , α=111.341(2), β=91.622(2), γ=107.5030(10), V=3499.1(5) 3 and Z=2. It crystallizes with two independent molecules in the asymmetric unit. The two cobalt atoms are hexa-coordinate and have a distorted octahedral geometry, satisfied by four nitrogen atoms from two molecules of the Schiff base and two nitrogen atoms from the monodentate azide group. The perchlorate ions are non-coordinating.
Resumo:
The aim of catalysis research is to apply the catalyst successfully in economically important reactions in an environmentally friendly way. The present work focuses on the modification of structural and surface properties of ceria and ceria-zirconia catalysts by the incorporation of transition metals. The applications of these catalysts in industrially important reactions like ethylbenzene oxidation, alkylation of aromatics are also investigated.Sol-gel method is effective for the preparation of transition metal modified ceria and ceria-zirconia mixed oxide since it produces catalyst with highly dispersed incorporated metal. Unlike that of impregnation method plugging of pores is not prominent for sol-gel derived catalyst materials. This prevents loss of surface area on metal modification as evident for BET surface area measurements.The powder X-ray diffraction analysis confirms the cubic structure of transition metal modified ceria and ceria-zirconia catalysts. The thermal stability is evident from TGA/DTA analysis. DR UV-vis spectra provide information on the coordination environment of the incorporated metal. EPR analysis ofCr, Mn and Cu modified ceria and a ceria-zirconia catalyst reveals the presence of different oxidation states of incorporated metal.Temperature programmed desorption of ammonia and thermogravimetric desorption of 2,6-dimethyl pyridine confirms the enhancement of acidity on metal incorporation. High a-methyl styrene selectivity in cumene cracking reaction implies the presence of comparatively more number of Lewis acid sites with some amount of Bronsted acid sites. The formation of cyclohexanone during cyclohexanol decomposition confirms the presence of basic sites on the catalyst surface.Mn and Cr modified catalysts show better activity towards ethylbenzene oxidation. A redox mechanism through oxometal pathway is suggested.All the catalysts were found to be active towards benzylation of toluene and a-xylene. The selectivity towards monoalkylated products remains almost 100%. The catalytic activity is correlated with the Lewis acidity of the prepared systems.The activity of the catalysts towards methylation of phenols depends on the strength acid sites as well as the redox properties of the catalysts. A strong dependence of methylation activity on the total acidity is illustrated.
Resumo:
Time-resolved studies of germylene, GeH2, generated by the 193 nm laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reactions with ethyl- and diethylgermanes in the gas phase. The reactions were studied over the pressure range 1-100 Torr with SF6 as bath gas and at five temperatures in the range 297-564 K. Only slight pressure dependences were found for GeH2 + EtGeH3 (399, 486, and 564 K). The high pressure rate constants gave the following Arrhenius parameters: for GeH2 + EtGeH3, log A = -10.75 +/- 0.08 and E-a = -6.7 +/- 0.6 kJ mol(-1); for GeH2 + Et2GeH2, log A = -10.68 +/- 0.11 and E-a = -6.95 +/- 0.80 kJ mol(-1). These are consistent with fast, near collision-controlled, association processes at 298 K. RRKM modeling calculations are, for the most part, consistent with the observed pressure dependence of GeH2 + EtGeH3. The ethyl substituent effects have been extracted from these results and are much larger than the analogous methyl substituent effects in the SiH2 + methylsilane reaction series. This is consistent with a mechanistic model for Ge-H insertion in which the intermediate complex has a sizable secondary barrier to rearrangement.
Resumo:
Time-resolved studies of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reaction with C2D2. The reaction was studied in the gas phase, mainly at a total pressure of 1.3 kPa (in SF6 bath gas) at five temperatures in the range 298-558 K. Pressure variation measurements over the range 0.13-13 kPa ( SF6) at 298, 397 and 558 K revealed a small pressure dependence but only at 558 K. After correction for this, the second-order rate coefficients gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.96 +/- 0.05) + ( 6.16 +/- 0.37 kJ mol(-1))/RT ln 10 Comparison with the reaction of GeH2 + C2H2 (studied earlier) showed a similar behaviour with almost identical rate coefficients. The lack of a significant isotope effect is consistent with a rate-determining addition process and is explained by irreversible decomposition of the reaction intermediate to give Ge(P-3) + C2H4. This result contrasts with that for GeH2 + C2H4/C2D4 and those for the analogous silylene reactions. The underlying reasons for this are discussed.
Resumo:
Lithium salt solutions of Li(CF3SO2)(2)N, LiTFSI, in a room-temperature ionic liquid (RTIL), 1-butyl-2,3-dimethyl-imidazolium cation, BMMI, and the (CF3SO2)(2)N-, bis(trifluoromethanesulfonyl)imide anion, [BMMI][TFSI], were prepared in different concentrations. Thermal properties, density, viscosity, ionic conductivity, and self-diffusion coefficients were determined at different temperatures for pure [BMMI][TFSI] and the lithium solutions. Raman spectroscopy measurements and computer simulations were also carried out in order to understand the microscopic origin of the observed changes in transport coefficients. Slopes of Walden plots for conductivity and fluidity, and the ratio between the actual conductivity and the Nernst-Einstein estimate for conductivity, decrease with increasing LiTFSI content. All of these studies indicated the formation of aggregates of different chemical nature, as it is corroborated by the Raman spectra. In addition, molecular dynamics (MD) simulations showed that the coordination of Li+ by oxygen atoms of TFSI anions changes with Li+ concentration producing a remarkable change of the RTIL structure with a concomitant reduction of diffusion coefficients of all species in the solutions.
Resumo:
Bifunctional catalysts based on zircon oxide modified by tungsten (W = 10, 15 and 20 %) and by molybdenum oxide (Mo= 10, 15 e 20 %) containg platinum (Pt = 1%) were prepared by the polymeric precursor method. For comparison, catalysts the tungsten base was also prepared by the impregnation method. After calcinations at 600, 700 and 800 ºC, the catalysts were characterized by X-ray diffraction, fourier-transform infrared spectroscopy, thermogravimetric and differential thermal analysis, nitrogen adsorption and scanning electron microscopy. The profile of metals reduction was determined by temperature programmed reduction. The synthesized catalysts were tested in n-heptane isomerization. X-ray diffractogram of the Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts revealed the presence of tetragonal ZrO2 and platinum metallic phases in all calcined samples. Diffraction peaks due WO3 and ZrO2 monoclinic also were observed in some samples of the Pt/WOx-ZrO2 catalysts. In the Pt/MoOx-ZrO2 catalysts also were observed diffraction peaks due ZrO2 monoclinic and Zr(MoO4)2 oxide. These phases contained on Pt/WOx-ZrO2 and Pt/MoOx-ZrO2 catalysts varied in accordance with the W or Mo loading and in accordance with the calcination temperature. The infrared spectra showed absorption bands due O-W-O and W=O bonds in the Pt/WOx-ZrO2 catalysts and due O-Mo-O, Mo=O and Mo-O bonds in the Pt/MoOx-ZrO2 catalysts. Specific surface area for Pt/WOx-ZrO2 catalysts varied from 30-160 m2 g-1 and for the Pt/MoOx-ZrO2 catalysts varied from 10-120 m2 g-1. The metals loading (W or Mo) and the calcination temperature influence directly in the specific surface area of the samples. The reduction profile of Pt/WOx-ZrO2 catalysts showed two peaks at lower temperatures, which are attributed to platinum reduction. The reduction of WOx species was evidenced by two reduction peak at high temperatures. In the case of Pt/MoOx-ZrO2 catalysts, the reduction profile showed three reduction events, which are attributed to reduction of MoOx species deposited on the support and in some samples one of the peak is related to the reduction of Zr(MoO4)2 oxide. Pt/WOx-ZrO2 catalysts were active in the n-heptane isomerization with high selectivity to 3-methyl-hexane, 2,3- dimethyl-pentane, 2-methyl-hexane among other branched hydrocarbons. The Pt/MoOx-ZrO2 catalysts practically didn't present activity for the n-heptane isomerization, generating mainly products originating from the catalytic cracking