997 resultados para 13-120
Resumo:
No Quarto Evangelho Jesus se apresenta por meio de metáforas, sendo o objeto de nossa pesquisa a frase: “Eu sou o caminho, e a verdade, e a vida”, que será o ponto de partida condutor em busca da identidade do grupo joanino. No final do primeiro século, o grupo joanino se entende como fiéis herdeiros de Jesus, agora seguidores do discípulo João (filho de Zebedeu), o qual caminhou com Jesus. O grupo não se apresenta alheio à realidade da multiplicidade religiosa do período, mas está atento aos conflitos e aos caminhos divergentes para Deus. Isso nos aponta o quão identitário é o tema. A partir de uma leitura em João 13.33-14.31, nossa dissertação tem como objeto o modo como o grupo joanino recebe essa mensagem no imaginário, a exterioriza e reage no cotidiano, bem como os grupos posteriores do gnosticismo —como o Evangelho da Verdade da Biblioteca Copta de Nag Hammadi, elaborado a partir de leituras ulteriores que plasmam o mundo simbólico imaginário, cultivando diferentes características de pertença, gerando a identidade do grupo joanino.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
The Ice Station POLarstern (ISPOL) cruise revisited the western Weddell Sea in late 2004 and obtained a comprehensive set of conductivity-temperature-depth (CTD) data. This study describes the thermohaline structure and diapycnal mixing environment observed in 2004 and compares them with conditions observed more than a decade earlier. Hydrographic conditions on the central western Weddell Sea continental slope, off Larsen C Ice Shelf, in late winter/early spring of 2004/2005 can be described as a well-stratified environment with upper layers evidencing relict structures from intense winter near-surface vertical fluxes, an intermediate depth temperature maximum, and a cold near-bottom layer marked by patchy property distributions. A well-developed surface mixed layer, isolated from the underlying Warm Deep Water (WDW) by a pronounced pycnocline and characterized by lack of warming and by minimal sea-ice basal melting, supports the assumption that upper ocean winter conditions persisted during most of the ISPOL experiment. Much of the western Weddell Sea water column has remained essentially unchanged since 1992; however, significant differences were observed in two of the regional water masses. The first, Modified Weddell Deep Water (MWDW), comprises the permanent pycnocline and was less saline than a decade earlier, whereas Weddell Sea Bottom Water (WSBW) was horizontally patchier and colder. Near-bottom temperatures observed in 2004 were the coldest on record for the western Weddell Sea over the continental slope. Minimum temperatures were ~0.4 and ~0.3 °C colder than during 1992-1993, respectively. The 2004 near-bottom temperature/salinity characteristics revealed the presence of two different WSBW types, whereby a warm, fresh layer overlays a colder, saltier layer (both formed in the western Weddell Sea). The deeper layer may have formed locally as high salinity shelf water (HSSW) that flowed intermittently down the continental slope, which is consistent with the observed horizontal patchiness. The latter can be associated with the near-bottom variability found in Powell Basin with consequences for the deep water outflow from the Weddell Sea.
Resumo:
To detect and track the impact of large-scale environmental changes in a the transition zone between the northern North Atlantic and the central Arctic Ocean, and to determine experimentally the factors controlling deep-sea biodiversity, the Alfred- Wegener-Institute for Polar and Marine Research (AWI) established the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. Virtually undisturbed sediment samples have been taken using a video-guided multiple corer (MUC) at 13 HAUSGARTEN stations along a bathymetric (1,000 - 4,000 m water depth) and a latitudinal transect in 2,500 m water depth as well as two stations at 230 and 1,200 m water depth within the framework of the KONGHAU project. Various biogenic sediment compounds were analyzed to estimate the input of organic matter from phytodetritus sedimentation, benthic activities (e.g. bacterial exoenzymatic activity), and the total biomass of the smallest sediment-inhabiting organisms (size range: bacteria to meiofauna).
Resumo:
The preliminary planning and approach to site 13 were taken from the JOIDES Atlantic Advisory Panel Report and from a previous detailed survey of the site by R/V Vema of the Lamont Geological Observatory. Several CSP profiles crossing the selected site in various directions show an uplifted portion of the sea floor roughly circular in shape of about 10 kilometers in diameter. In contrast to the smooth bottom of the surrounding abyssal plain, the topography of the small rise selected for the site has a small-scale roughness of amplitude of 40 to 80 meters. The work reported here is a biostratigraphic summary of available samples. Only the most important and biostratigraphically significant components of the faunas have been noted. No attempt has been made to give an exhaustive faunal analysis of the samples seen.
Resumo:
2015