874 resultados para Émigration
Resumo:
Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.
Resumo:
Habitat fragmentation produces patches of suitable habitat surrounded by unfavourable matrix habitat. A species may persist in such a fragmented landscape in an equilibrium between the extinctions and recolonizations of local populations, thus forming a metapopulation. Migration between local populations is necessary for the long-term persistence of a metapopulation. The Glanville fritillary butterfly (Melitaea cinxia) forms a metapopulation in the Åland islands in Finland. There is migration between the populations, the extent of which is affected by several environmental factors and variation in the phenotype of individual butterflies. Different allelic forms of the glycolytic enzyme phosphoglucose isomerase (Pgi) has been identified as a possible genetic factor influencing flight performance and migration rate in this species. The frequency of a certain Pgi allele, Pgi-f, follows the same pattern in relation to population age and connectivity as migration propensity. Furthermore, variation in flight metabolic performance, which is likely to affect migration propensity, has been linked to genetic variation in Pgi or a closely linked locus. The aim of this study was to investigate the association between Pgi genotype and the migration propensity in the Glanville fritillary both at the individual and population levels using a statistical modelling approach. A mark-release-recapture (MRR) study was conducted in a habitat patch network of M. cinxia in Åland to collect data on the movements of individual butterflies. Larval samples from the study area were also collected for population level examinations. Each butterfly and larva was genotyped at the Pgi locus. The MRR data was parameterised with two mathematical models of migration: the Virtual Migration Model (VM) and the spatially explicit diffusion model. VM model predicted and observed numbers of emigrants from populations with high and low frequencies of Pgi-f were compared. Posterior predictive data sets were simulated based on the parameters of the diffusion model. Lack-of-fit of observed values to the model predicted values of several descriptors of movements were detected, and the effect of Pgi genotype on the deviations was assessed by randomizations including the genotype information. This study revealed a possible difference in the effect of Pgi genotype on migration propensity between the two sexes in the Glanville fritillary. The females with and males without the Pgi-f allele moved more between habitat patches, which is probably related to differences in the function of flight in the two sexes. Females may use their high flight capacity to migrate between habitat patches to find suitable oviposition sites, whereas males may use it to acquire mates by keeping a territory and fighting off other intruding males, possibly causing them to emigrate. The results were consistent across different movement descriptors and at the individual and population levels. The effect of Pgi is likely to be dependent on the structure of the landscape and the prevailing environmental conditions.
Resumo:
The migrating electrons in biological systems normally are extraneous and taking this into account the electron delocalisation across the hydrogen bonds in proteins is re-examined. It is seen that an extraneous electron can travel rapidly via the low-lying virtual orbitals of the hydrogen-bonded π-electronic structure of peptide units in proteins. The frequency of electron transfer decreases slowly with an increase in the path length. However, the coupling of electron and protonic motions enhances this frequency. Transfer of electrons across the hydrogen bonds in accordance with the double-exchange mechanism does not appear to be possible. This theory offers a possibility for an extraneous electron to transfer within protein structures.
Resumo:
The aim of this thesis is to examine migration of educated Dominicans in light of global processes. Current global developments have resulted in increasingly global movements of people, yet people tend to come from certain places in large numbers rather than others. At the same time, international migration is increasingly selective, which shows in the disproportional number of educated migrants. This study discovers individual and societal motivations that explain why young educated Dominicans decide to migrate and return. The theoretical framework of this thesis underlines that migration is a dynamic process rooted in other global developments. Migratory movements should be seen as a result of interacting macro- and microstructures, which are linked by a number of intermediate mechanisms, meso-structures. The way individuals perceive opportunity structures concretises the way global developments mediate to the micro-level. The case of the Dominican Republic shows that there is a diversity of local responses to the world system, as Dominicans have produced their own unique historical responses to global changes. The thesis explains that Dominican migration is importantly conditioned by socioeconomic and educational background. Migration is more accessible for the educated middle class, because of the availability of better resources. Educated migrants also seem less likely to rely on networks to organize their migrations. The role of networks in migration differs by socioeconomic background on the one hand, and by the specific connections each individual has to current and previous migrants on the other hand. The personal and cultural values of the migrant are also pivotal. The central argument of this thesis is that a veritable culture of migration has evolved in the Dominican Republic. The actual economic, political and social circumstances have led many Dominicans to believe that there are better opportunities elsewhere. The globalisation of certain expectations on the one hand, and the development of the specifically Dominican feeling of ‘externalism’ on the other, have for their part given rise to the Dominican culture of migration. The study also suggests that the current Dominican development model encourages migration. Besides global structures, local structures are found to ve pivotal in determining how global processes are materialised in a specific place. The research for this thesis was conducted by using qualitative methodology. The focus of this thesis was on thematic interviews that reveal the subject’s point of view and give a fuller understanding of migration and mobility of the educated. The data was mainly collected during a field research phase in Santo Domingo, the Dominican Republic in December 2009 and January 2010. The principal material consists of ten thematic interviews held with educated Dominican current or former migrants. Four expert interviews, relevant empirical data, theoretical literature and newspaper articles were also comprehensively used.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
Glioblastoma (GBM; grade IV astrocytoma) is the most malignant and common primary brain tumor in adults. Using combination of 2-DE and MALDI-TOF MS, we analyzed 14 GBM and 6 normal control sera and identified haptoglobin alpha 2 chain as an up-regulated serum protein in GBM patients. GBM-specific up-regulation was confirmed by ELISA based quantitation of haptoglobin (Hp) in the serum of 99 GBM patients as against lower grades (49 grade III/AA; 26 grade II/DA) and 26 normal individuals (p = 0.0001). Further validation using RT-qPCR on an independent set (n = 78) of tumor and normal brain (n = 4) samples and immunohistochemcial staining on a subset (n = 42) of above samples showed increasing levels of transcript and protein with tumor grade and were highest in GBM (p = < 0.0001 and < 0.0001, respectively). Overexpression of Hp either by stable integration of Hp cDNA or exogenous addition of purified Hp to immortalized astrocytes resulted in increased cell migration. RNAi-mediated silencing of Hp in glioma cells decreased cell migration. Further, we demonstrate that both human glioma and mouse melanoma cells overexpressing Hp showed increased tumor growth. Thus, we have identified haptoglobin as a GBM-specific serum marker with a role on glioma tumor growth and migration.
Resumo:
The European Union has agreed on implementing the Policy Coherence for Development (PCD) principle in all policy sectors that are likely to have a direct impact on developing countries. This is in order to take account of and support the EU development cooperation objectives and the achievement of the internationally agreed Millennium Development Goals. The common EU migration policy and the newly introduced EU Blue Card directive present an example of the implementation of the principle in practice: the directive is not only designed to respond to the occurring EU labour demand by attracting highly skilled third-country professionals, but is also intended to contribute to the development objectives of the migrant-sending developing countries, primarily through the tool of circular migration and the consequent skills transfers. My objective in this study is to assess such twofold role of the EU Blue Card and to explore the idea that migration could be harnessed for the benefit of development in conformity with the notion that the two form a positive nexus. Seeing that the EU Blue Card fails to differentiate the most vulnerable countries and sectors from those that are in a better position to take advantage of the global migration flows, the developmental consequences of the directive must be accounted for even in the most severe settings. Accordingly, my intention is to question whether circular migration, as claimed, could address the problem of brain drain in the Malawian health sector, which has witnessed an excessive outflow of its professionals to the UK during the past decade. In order to assess the applicability, likelihood and relevance of circular migration and consequent skills transfers for development in the Malawian context, a field study of a total of 23 interviews with local health professionals was carried out in autumn 2010. The selected approach not only allows me to introduce a developing country perspective to the on-going discussion at the EU level, but also enables me to assess the development dimension of the EU Blue Card and the intended PCD principle through a local lens. Thus these interviews and local viewpoints are at the very heart of this study. Based on my findings from the field, the propensity of the EU Blue Card to result in circular migration and to address the persisting South-North migratory flows as well as the relevance of skills transfers can be called to question. This is as due to the bias in its twofold role the directive overlooks the importance of the sending country circumstances, which are known to determine any developmental outcomes of migration, and assumes that circular migration alone could bring about immediate benefits. Without initial emphasis on local conditions, however, positive outcomes for vulnerable countries such as Malawi are ever more distant. Indeed it seems as if the EU internal interests in migration policy forbid the fulfilment of the PCD principle and diminish the attempt to harness migration for development to bare rhetoric.
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.
Resumo:
Nanoindentation and scratch experiments on 1:1 donor-acceptor complexes, 1 and 2, of 1,2,4,5-tetracyanobenzene with pyrene and phenanthrene, respectively, reveal long-range molecular layer gliding and large interaction anisotropy. Due to the layered arrangements in these crystals, these experiments that apply stress in particular directions result in the breaking of interlayer interactions, thus allowing molecular sheets to glide over one another with ease. Complex 1 has a layered crystal packing wherein the layers are 68° skew under the (002) face and the interlayer space is stabilized by van der Waals interactions. Upon indenting this surface with a Berkovich tip, pile-up of material was observed on just one side of the indenter due to the close angular alignment of the layers with the half angle of the indenter tip (65.35°). The interfacial differences in the elastic modulus (21 ) and hardness (16 ) demonstrate the anisotropic nature of crystal packing. In 2, the molecular stacks are arranged in a staggered manner; there is no layer arrangement, and the interlayer stabilization involves C-H�N hydrogen bonds and ��� interactions. This results in a higher modulus (20 ) for (020) as compared to (001), although the anisotropy in hardness is minimal (4 ). The anisotropy within a face was analyzed using AFM image scans and the coefficient of friction of four orthogonal nanoscratches on the cleavage planes of 1 and 2. A higher friction coefficient was obtained for 2 as compared to 1 even in the cleavage direction due to the presence of hydrogen bonds in the interlayer region making the tip movement more hindered. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
S100A2, an EF hand calcium-binding protein, is a potential biomarker in several cancers and is also a TGF-beta (transforming growth factor-beta)-regulated gene in melanoma and lung cancer cells. However, the mechanism of S100A2 regulation by TGF-beta and its significance in cancer progression remains largely unknown. In the present study we report the mechanism of S100A2 regulation by TGF-beta and its possible role in TGF-beta-mediated tumour promotion. Characterization of the S100A2 promoter revealed an AP-1 (activator protein-1) element at positions -1161 to -1151 as being the most critical factor for the TGF-beta 1 response. Chromatin immunoprecipitation and electrophoretic mobility-shift assays confirmed the functional binding of the AP-1 complex, predominantly JunB, to the S100A2 promoter in response to TGF-beta 1 in HaCaT keratinocytes. JunB overexpression markedly stimulated the S100A2 promoter which was blocked by the dominant-negative JunB and MEK1 MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1] inhibitor, PD98059. Intriguingly, despite the presence of a putative SMAD-binding element, S100A2 regulation by TGF-beta 1 was found to be SMAD3 independent. Interestingly, p53 protein and TGF-beta 1 show synergistic regulation of the S100A2 promoter. Finally, knockdown of S100A2 expression compromised TGF-beta 1-induced cell migration and invasion of Hep3B cells. Together our findings highlight an important link between the TGF-beta 1-induced MAPK and p53 signalling pathways in the regulation of S100A2 expression and pro-tumorigenic actions.
Resumo:
Charnockite is considered to be generated either through the dehydration of granitic magma by CO2 purging or by solid-state dehydration through CO2 metasomatism during granulite facies metamorphism. To understand the extent of dehydration, CO2 migration is quantitatively modeled in silicate melt and metasomatic fluid as a function of temperature, H2O wt%, pressure, basal CO2 flux and dynamic viscosity. Numerical simulations show that CO2 advection through porous and permeable high-grade metamorphic rocks can generate dehydrated patches close to the CO2 flow path, as illustrated by the occurrences of ``incipient charnockites.'' CO2 reaction-front velocity constrained by field observations is 0.69 km/m.y., a reasonable value, which matches well with other studies. On the other hand, temperature, rate of cooling, and basal CO2 flux are the critical parameters affecting CO2 diffusion through a silicate melt. CO2 diffusion through silicate melt can only occur at temperature greater than 840 degrees C and during slow cooling (<= 3.7 x 10(-5) degrees C/yr), features that are typical of magma emplacement in the lower crust. Stalling of CO2 fluxing at similar to 840 degrees C explains why some deep-level plutons contain both hydrous and anhydrous (charnockitic) mineral assemblages. CO2 diffusion through silicate melt is virtually insensitive to pressure. Addition of CO2 basal flux facilitates episodic dehydrated melt migration by generating fracture pathways.