995 resultados para ration level


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complexity is conventionally defined as the level of detail or intricacy contained within a picture. The study of complexity has received relatively little attention-in part, because of the absence of an acceptable metric. Traditionally, normative ratings of complexity have been based on human judgments. However, this study demonstrates that published norms for visual complexity are biased. Familiarity and learning influence the subjective complexity scores for nonsense shapes, with a significant training x familiarity interaction [F(1,52) = 17.53, p <.05]. Several image-processing techniques were explored as alternative measures of picture and image complexity. A perimeter detection measure correlates strongly with human judgments of the complexity of line drawings of real-world objects and nonsense shapes and captures some of the processes important in judgments of subjective complexity, while removing the bias due to familiarity effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper starts presents the work initially carried out by Queen's University and RSRE (now Qinetiq) in the development of advanced architectures and microchips based on systolic array architectures. The paper outlines how this has led to the development of highly complex designs for high definition TV and highlights work both on advanced signal processing architectures and tool flows for advanced systems. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors investigated how different levels of detail (LODs) of a virtual throwing action can influence a handball goalkeeper's motor response. Goalkeepers attempted to stop a virtual ball emanating from five different graphical LODs of the same virtual throwing action. The five levels of detail were: a textured reference level (L0), a non-textured level (L1), a wire-frame level (L2), a point-light-display (PLD) representation (L3) and a PLD level with reduced ball size (L4). For each motor response made by the goalkeeper we measured and analyzed the time to respond (TTR), the percentage of successful motor responses, the distance between the ball and the closest limb (when the stopping motion was incorrect) and the kinematics of the motion. Results showed that TTR, percentage of successful motor responses and distance with the closest limb were not significantly different for any of the five different graphical LODs. However the kinematics of the motion revealed that the trajectory of the stopping limb was significantly different when comparing the L1 and L3 levels, and when comparing the L1 and L4 levels. These differences in the control of the goalkeeper's actions suggests that the different level of information available in the PLD representations ( L3 and L4) are causing the goalkeeper to adopt different motor strategies to control the approach of their limb to stop the ball.