998 resultados para indirect mapping
Resumo:
Most multidimensional projection techniques rely on distance (dissimilarity) information between data instances to embed high-dimensional data into a visual space. When data are endowed with Cartesian coordinates, an extra computational effort is necessary to compute the needed distances, making multidimensional projection prohibitive in applications dealing with interactivity and massive data. The novel multidimensional projection technique proposed in this work, called Part-Linear Multidimensional Projection (PLMP), has been tailored to handle multivariate data represented in Cartesian high-dimensional spaces, requiring only distance information between pairs of representative samples. This characteristic renders PLMP faster than previous methods when processing large data sets while still being competitive in terms of precision. Moreover, knowing the range of variation for data instances in the high-dimensional space, we can make PLMP a truly streaming data projection technique, a trait absent in previous methods.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
Park CY, Tambe D, Alencar AM, Trepat X, Zhou EH, Millet E, Butler JP, Fredberg JJ. Mapping the cytoskeletal prestress. Am J Physiol Cell Physiol 298: C1245-C1252, 2010. First published February 17, 2010; doi: 10.1152/ajpcell.00417.2009.-Cell mechanical properties on a whole cell basis have been widely studied, whereas local intracellular variations have been less well characterized and are poorly understood. To fill this gap, here we provide detailed intracellular maps of regional cytoskeleton (CSK) stiffness, loss tangent, and rate of structural rearrangements, as well as their relationships to the underlying regional F-actin density and the local cytoskeletal prestress. In the human airway smooth muscle cell, we used micropatterning to minimize geometric variation. We measured the local cell stiffness and loss tangent with optical magnetic twisting cytometry and the local rate of CSK remodeling with spontaneous displacements of a CSK-bound bead. We also measured traction distributions with traction microscopy and cell geometry with atomic force microscopy. On the basis of these experimental observations, we used finite element methods to map for the first time the regional distribution of intracellular prestress. Compared with the cell center or edges, cell corners were systematically stiffer and more fluidlike and supported higher traction forces, and at the same time had slower remodeling dynamics. Local remodeling dynamics had a close inverse relationship with local cell stiffness. The principal finding, however, is that systematic regional variations of CSK stiffness correlated only poorly with regional F-actin density but strongly and linearly with the regional prestress. Taken together, these findings in the intact cell comprise the most comprehensive characterization to date of regional variations of cytoskeletal mechanical properties and their determinants.
Resumo:
Nuclear (p,alpha) reactions destroying the so-called ""light-elements"" lithium, beryllium and boron have been largely studied in the past mainly because their role in understanding some astrophysical phenomena, i.e. mixing-phenomena occurring in young F-G stars [1]. Such mechanisms transport the surface material down to the region close to the nuclear destruction zone, where typical temperatures of the order of similar to 10(6) K are reached. The corresponding Gamow energy E(0)=1.22 (Z(x)(2)Z(X)(2)T(6)(2))(1/3) [2] is about similar to 10 keV if one considers the ""boron-case"" and replaces in the previous formula Z(x) = 1, Z(X) = 5 and T(6) = 5. Direct measurements of the two (11)B(p,alpha(0))(8)Be and (10)B(p,alpha)(7)Be reactions in correspondence of this energy region are difficult to perform mainly because the combined effects of Coulomb barrier penetrability and electron screening [3]. The indirect method of the Trojan Horse (THM) [4-6] allows one to extract the two-body reaction cross section of interest for astrophysics without the extrapolation-procedures. Due to the THM formalism, the extracted indirect data have to be normalized to the available direct ones at higher energies thus implying that the method is a complementary tool in solving some still open questions for both nuclear and astrophysical issues [7-12].
Resumo:
Several experiments were performed to investigate both (p, alpha) and (n, alpha) reactions induced on boron isotopes, by means of Quasi-Free (QF) reactions induced on deuteron target. The experimental study of the astrophysically relevant, (11)B(p, alpha(0))(8)Be reaction was performed by selecting the QF-contribution on the (2)H((11)B, alpha(8)(0)Be)n reaction. Moreover, due to the large interest of a better understanding of (n, alpha) reactions both for nuclear and astrophysical developments, a preliminary study of the (10)B(n, alpha)(7)Li through the QF (2)H((10)B, alpha(7)Li)p reaction was also performed. The results concerning the two experiments will be shown and discussed.
Resumo:
The (2)H(d,p)(3)H and (2)H(d,n)(3)He reactions have been indirectly studied by means of the Trojan Horse Method applied to the quasi-free (2)H((3)He, p(3)H)(1)H (2)H((3)He, n(3)He)(1)H reaction at 18 MeV of beam energy. This is the first experiment where the spectator (here (1)H) has been detected in coincidence with the charged participant, avoiding the limitations of standard neutron detectors. The d - d relative energy has been measured from 1.5 MeV down to 2 keV, at center of mass angles from 40A degrees to 170A degrees. Indirect angular distributions are compared with the direct behaviour in the overlapping regions.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.