998 resultados para handgrip recognition
Resumo:
This work presents a novel approach for human action recognition based on the combination of computer vision techniques and common-sense knowledge and reasoning capabilities. The emphasis of this work is on how common sense has to be leveraged to a vision-based human action recognition so that nonsensical errors can be amended at the understanding stage. The proposed framework is to be deployed in a realistic environment in which humans behave rationally, that is, motivated by an aim or a reason. © 2012 Springer-Verlag.
Resumo:
This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.