1000 resultados para curved DNA
Resumo:
DNA sequence representation methods are used to denote a gene structure effectively and help in similarities/dissimilarities analysis of coding sequences. Many different kinds of representations have been proposed in the literature. They can be broadly classified into Numerical, Graphical, Geometrical and Hybrid representation methods. DNA structure and function analysis are made easy with graphical and geometrical representation methods since it gives visual representation of a DNA structure. In numerical method, numerical values are assigned to a sequence and digital signal processing methods are used to analyze the sequence. Hybrid approaches are also reported in the literature to analyze DNA sequences. This paper reviews the latest developments in DNA Sequence representation methods. We also present a taxonomy of various methods. A comparison of these methods where ever possible is also done
Characterization and Pathogenicity of Vibrio cholerae and Vibrio vulnificus from Marine environments
Resumo:
The genus Vibrioof the family Vibrionaceae are Gram negative, oxidasepositive, rod- or curved- rodshaped facultative anaerobes, widespread in marine and estuarine environments. Vibrio species are opportunistic human pathogens responsible for diarrhoeal disease, gastroenteritis, septicaemia and wound infections and are also pathogens of aquatic organisms, causing infections to crustaceans, bivalves and fishes. In the present study, marine environmental samples like seafood and water and sediment samples from aquafarms and mangroves were screened for the presence of Vibrio species. Of the134 isolates obtained from the various samples, 45 were segregated to the genus Vibrio on the basis of phenotypic characterization.like Gram staining, oxidase test, MoF test and salinity tolerance. Partial 16S rDNA sequence analysis was utilized for species level identification of the isolates and the strains were identified as V. cholerae(N=21), V. vulnificus(N=18), V. parahaemolyticus(N=3), V. alginolyticus (N=2) and V. azureus (N=1). The genetic relatedness and variations among the 45 Vibrio isolates were elucidated based on 16S rDNA sequences. Phenotypic characterization of the isolates was based on their response to 12 biochemical tests namely Voges-Proskauers’s (VP test), arginine dihydrolase , tolerance to 3% NaCl test, ONPG test that detects β-galactosidase activity, and tests for utilization of citrate, ornithine, mannitol, arabinose, sucrose, glucose, salicin and cellobiose. The isolates exhibited diverse biochemical patterns, some specific for the species and others indicative of their environmental source.Antibiogram for the isolates was determined subsequent to testing their susceptibility to 12 antibiotics by the disc diffusion method. Varying degrees of resistance to gentamycin (2.22%), ampicillin(62.22%), nalidixic acid (4.44%), vancomycin (86.66), cefixime (17.77%), rifampicin (20%), tetracycline (42.22%) and chloramphenicol (2.22%) was exhibited. All the isolates were susceptible to streptomycin, co-trimoxazole, trimethoprim and azithromycin. Isolates from all the three marine environments exhibited multiple antibiotic resistance, with high MAR index value. The molecular typing methods such as ERIC PCR and BOX PCR revealed intraspecies relatedness and genetic heterogeneity within the environmental isolatesof V. cholerae and V. vulnificus. The 21 strains of V. choleraewere serogroupedas non O1/ non O139 by screening for the presence O1rfb and O139 rfb marker genes by PCR. The virulence/virulence associated genes namely ctxA, ctxB, ace, VPI, hlyA, ompU, rtxA, toxR, zot, nagst, tcpA, nin and nanwere screened in V. cholerae and V. vulnificusstrains.The V. vulnificusstrains were also screened for three species specific genes viz., cps, vvhand viu. In V. cholerae strains, the virulence associated genes like VPI, hlyA, rtxA, ompU and toxR were confirmed by PCR. All the isolates, except for strain BTOS6, harbored at least one or a combination of the tested genes and V. choleraestrain BTPR5 isolated from prawn hosted the highest number of virulence associated genes. Among the V. vulnificusstrains, only 3 virulence genes, VPI, toxR and cps, were confirmed out of the 16 tested and only 7 of the isolates had these genes in one or more combinations. Strain BTPS6 from aquafarm and strain BTVE4 from mangrove samples yielded positive amplification for the three genes. The toxRgene from 9 strains of V. choleraeand 3 strains of V. vulnificus were cloned and sequenced for phylogenetic analysis based on nucleotide and the amino acid sequences. Multiple sequence alignment of the nucleotide sequences and amino acid sequences of the environmental strains of V. choleraerevealed that the toxRgene in the environmental strains are 100% homologous to themselves and to the V. choleraetoxR gene sequence available in the Genbank database. The 3 strains of V. vulnificus displayed high nucleotide and amino acid sequence similarity among themselves and to the sequences of V. cholerae and V. harveyi obtained from the GenBank database, but exhibited only 72% homology to the sequences of its close relative V. vulnificus. Structure prediction of the ToxR protein of Vibrio cholerae strain BTMA5 was by PHYRE2 software. The deduced amino acid sequence showed maximum resemblance with the structure of DNA-binding domain of response regulator2 from Escherichia coli k-12 Template based homology modelling in PHYRE2 successfully modelled the predicted protein and its secondary structure based on protein data bank (PDB) template c3zq7A. The pathogenicity studies were performed using the nematode Caenorhabditiselegansas a model system. The assessment of pathogenicity of environmental strain of V. choleraewas conducted with E. coli strain OP50 as the food source in control plates, environmental V. cholerae strain BTOS6, negative for all tested virulence genes, to check for the suitability of Vibrio sp. as a food source for the nematode;V. cholerae Co 366 ElTor, a clinical pathogenic strain and V. cholerae strain BTPR5 from seafood (Prawn) and positive for the tested virulence genes like VPI, hlyA, ompU,rtxA and toxR. It was found that V. cholerae strain BTOS6 could serve as a food source in place of E. coli strain OP50 but behavioral aberrations like sluggish movement and lawn avoidance and morphological abnormalities like pharyngeal and intestinal distensions and bagging were exhibited by the worms fed on V. cholerae Co 366 ElTor strain and environmental BTPR5 indicating their pathogenicity to the nematode. Assessment of pathogenicity of the environmental strains of V. vulnificus was performed with V. vulnificus strain BTPS6 which tested positive for 3 virulence genes, namely, cps, toxRand VPI, and V. vulnificus strain BTMM7 that did not possess any of the tested virulence genes. A reduction was observed in the life span of worms fed on environmental strain of V. vulnificusBTMM7 rather than on the ordinary laboratory food source, E. coli OP50. Behavioral abnormalities like sluggish movement, lawn avoidance and bagging were also observed in the worms fed with strain BTPS6, but the pharynx and the intestine were intact. The presence of multi drug resistant environmental Vibrio strainsthat constitute a major reservoir of diverse virulence genes are to be dealt with caution as they play a decisive role in pathogenicity and horizontal gene transfer in the marine environments.
Resumo:
DNA methyltransferases of type Dnmt2 are a highly conserved protein family with enigmatic function. The aim of this work was to characterize DnmA, the Dnmt2 methyltransferase in Dictyostelium discoideum, and further to investigate its implication in DNA methylation and transcriptional gene silencing. The genome of the social amoeba Dictyostelium encodes DnmA as the sole DNA methyltransferase. The enzyme bears all ten characteristic DNA methyltransferase motifs in its catalytic domain. The DnmA mRNA was found by RT-PCR to be expressed during vegetative growth and down regulated during development. Investigations using fluorescence microscopy showed that both DnmA-myc and DnmA-GFP fusions predominantly localised to the nucleus. The function of DnmA remained initially unclear, but later experiment revealed that the enzyme is an active DNA methyltransferase responsible for all DNA (cytosine) methylation in Dictyostelium. Neither in gel retardation assays, nor by the yeast two hybrid system, clues on the functionality of DnmA could be obtained. However, immunological detection of the methylation mark with an α - 5mC antibody gave initial evidence that the DNA of Dictyostelium was methylated. Furthermore, addition of 5-aza-cytidine as demethylating agent to the Dictyostelium medium and subsequent in vitro incubation of the DNA isolated from these cells with recombinant DnmA showed that the enzyme binds slightly better to this target DNA. In order to investigate further the function of the protein, a gene knock-out for dnmA was generated. The gene was successfully disrupted by homologous recombination, the knock-out strain, however, did not show any obvious phenotype under normal laboratory conditions. To identify specific target sequences for DNA methylation, a microarray analysis was carried out. Setting a threshold of at least 1.5 fold for differences in the strength of gene expression, several such genes in the knock-out strain were chosen for further investigation. Among the up-regulated genes were the ESTs representing the gag and the RT genes respectively of the retrotransposon skipper. In addition Northern blot analysis confirmed the up-regulation of skipper in the DnmA knock-out strain. Bisufite treatment and sequencing of specific DNA stretches from skipper revealed that DnmA is responsible for methylation of mostly asymmetric cytosines. Together with skipper, DIRS-1 retrotransposon was found later also to be methylated but was not present on the microarray. Furthermore, skipper transcription was also up-regulated in strains that had genes disrupted encoding components of the RNA interference pathway. In contrast, DIRS 1 expression was not affected by a loss of DnmA but was strongly increased in the strain that had the RNA directed RNA polymerase gene rrpC disrupted. Strains generated by propagating the usual wild type Ax2 and the DnmA knock-out cells over 16 rounds in development were analyzed for transposon activity. Northern blot analysis revealed activation for skipper expression, but not for DIRS-1. A large number of siRNAs were found to be correspondent to the DIRS-1 sequence, suggesting concerted regulation of DIRS-1 expression by RNAi and DNA methylation. In contrast, no siRNAs corresponding to the standard skipper element were found. The data show that DNA methylation plays a crucial role in epigenetic gene regulation in Dictyostelium and that different, partially overlapping mechanisms control transposon silencing for skipper and DIRS-1. To elucidate the mechanism of targeting the protein to particular genes in the Dictyostelium genome, some more genes which were up-regulated in the DnmA knock-out strain were analyzed by bisulfite sequencing. The chosen genes are involved in the multidrug response in other species, but their function in Dictyostelium is uncertain. Bisulfite data showed that two of these genes were methylated at asymmetrical C-residues in the wild type, but not in DnmA knock-out cells. This suggested that DNA methylation in Dictyostelium is involved not only in transposon regulation but also in transcriptional silencing of specific genes.
Resumo:
Endogene Gefahrensignale, die das Immunsystem aktivieren, sind ein neues Konzept der Immunbiologie. Sie spielen eine Rolle für eine Vielzahl von viralen und bakteriellen Erkrankungen und werden als massgebliche Ursache für eine Reihe von Autoimmunerkrankungen diskutiert. Diese Arbeit testet die Hypothese, dass fragmentierte mitochondriale DNA (mtDNA) immunstimulatorische DNA-Motive beinhaltet, die in der Lage sind, eine Immunantwort durch plasmazytoide dendritische Zellen (PDC, engl. plasmacytoid dendritic cells) zu vermitteln. Daher wurden mtDNA und genomische DNA aus mononukleären Zellen des peripheren Bluts (PBMC, engl. peripheral blood mononuclear cells) und Thrombozyten isoliert. Diese DNA-Spezies wurde mithilfe des liposomalen Transfektionsreagenzes DOTAP in PBMC transfiziert und die Immunaktivierung anhand des Interferon-alpha Spiegels im Zellkulturüberstand gemessen. Beide DNA-Spezies induzierten eine vergleichbare Interferon-Produktion. Eine Verkürzung der mtDNA zu CpG-Inseln verstärkte die immunstimulatorische Kapazität, abhängig vom Vorhandensein unmethylierter CpG-Motive. Die Komplexierung der CpG-Inseln mit dem humanem Cathelicidin LL-37 führte auch ohne DOTAP Transfektion zu einer Interferon-Antwort. Ein weiteres Verkürzen der mtDNA zu mitochondrialen Oligodeoxynukleotiden (mtODN) mit Sequenz- und Strukturähnlichkeiten zu kommerziellen CpG-ODN, lieferte Sequenzen mit starker Interferon-Induktion und der Fähigkeit, PDC zu maturieren und migrieren. Insbesondere waren zwei mtODN mit Doppelpalindromstruktur in der Lage, PDC spontan ohne Transfektion oder als Immunkomplex zu aktivieren. Durchflusszytometrie, Lebendzell- und konfokale Laserscanningmikroskopie zeigte die Anheftung und Aufnahme eines der mtODN in endosomale Kompartimente und Kolokalisation mit TLR9. Auch konnte eine schwache aber signifikante PDC-, B-Zell- und NK-Zell-Aktivierung durch dieses ODN gezeigt werden. Zusammengefaßt deuten unsere Daten darauf hin, dass fragmentierte mitochondriale DNA aus apoptotischen oder nekrotischen Zellen als Gefahrensignal für das Immunsystem fungieren kann und so über Stimulation von PDC zur akuten oder chronischen Immunaktivierung und damit zur Immunpathogenese von HIV-Infektionen beitragen kann.
Resumo:
A method is presented for the visual analysis of objects by computer. It is particularly well suited for opaque objects with smoothly curved surfaces. The method extracts information about the object's surface properties, including measures of its specularity, texture, and regularity. It also aids in determining the object's shape. The application of this method to a simple recognition task ??e recognition of fruit ?? discussed. The results on a more complex smoothly curved object, a human face, are also considered.
Resumo:
We have discovered that the current protocols to assemble Au nanoparticles based on DNA hybridization do not work well with the small metal nanoparticles (e.g. 5 nm Au, 3.6 nm Pt and 3.2 nm Ru particles). Further investigations revealed the presence of strong interaction between the oligonucleotide backbone and the surface of the small metal nanoparticles. The oligonucleotides in this case are recumbent on the particle surface and are therefore not optimally oriented for hybridization. The nonspecific adsorption of oligonucleotides on small metal nanoparticles must be overcome before DNA hybridization can be accepted as a general assembly method. Two methods have been suggested as possible solutions to this problem. One is based on the use of stabilizer molecules which compete with the oligonucleotides for adsorption on the metal nanoparticle surface. Unfortunately, the reported success of this approach in small Au nanoparticles (using K₂BSPP) and Au films (using 6-mercapto-1-hexanol) could not be extended to the assembly of Pt and Ru nanoparticles by DNA hybridization. The second approach is to simply use larger metal particles. Indeed most reports on the DNA hybridization induced assembly of Au nanoparticles have made use of relatively large particles (>10 nm), hinting at a weaker non-specific interaction between the oligonucleotides and large Au nanoparticles. However, most current methods of nanoparticle synthesis are optimized to produce metal nanoparticles only within a narrow size range. We find that core-shell nanoparticles formed by the seeded growth method may be used to artificially enlarge the size of the metal particles to reduce the nonspecific binding of oligonucleotides. We demonstrate herein a core-shell assisted growth method to assemble Pt and Ru nanoparticles by DNA hybridization. This method involves firstly synthesizing approximately 16 nm core-shell Ag-Pt and 21 nm core-shell Au-Ru nanoparticles from 9.6 nm Ag seeds and 17.2 nm Au seeds respectively by the seed-mediated growth method. The core-shell nanoparticles were then functionalized by complementary thiolated oligonucleotides followed by aging in 0.2 M PBS buffer for 6 hours. The DNA hybridization induced bimetallic assembly of Pt and Ru nanoparticles could then be carried out in 0.3 M PBS buffer for 10 hours.
Resumo:
Resumen tomado del autor
Resumo:
Experimental and epidemiological studies demonstrate that fetal growth restriction and low birth weight enhance the risk of chronic diseases in adulthood. Derangements in tissue-specific epigenetic programming of fetal and placental tissues are a suggested mechanism of which DNA methylation is best understood. DNA methylation profiles in human tissue are mostly performed in DNA from white blood cells. The objective of this study was to assess DNA methylation profiles of IGF2 DMR and H19 in DNA derived from four tissues of the newborn. We obtained from 6 newborns DNA from fetal placental tissue (n = 5), umbilical cord CD34+ hematopoietic stem cells (HSC) and CD34- mononuclear cells (MNC) (n = 6), and umbilical cord Wharton jelly (n = 5). HCS were isolated using magnetic-activated cell separation. DNA methylation of the imprinted fetal growth genes IGF2 DMR and H19 was measured in all tissues using quantitative mass spectrometry. ANOVA testing showed tissue-specific differences in DNA methylation of IGF2 DMR (p value 0.002) and H19 (p value 0.001) mainly due to a higher methylation of IGF2 DMR in Wharton jelly (mean 0.65, sd 0.14) and a lower methylation of H19 in placental tissue (mean 0.25, sd 0.02) compared to other tissues. This study demonstrates the feasibility of the assessment of differential tissue specific DNA methylation. Although the results have to be confirmed in larger sample sizes, our approach gives opportunities to investigate epigenetic profiles as underlying mechanism of associations between pregnancy exposures and outcome, and disease risks in later life.
Resumo:
Resumen tomado de la publicación en catalán. Este artículo forma parte del monográfico 'Ciències experimentals: propostes didàctiques'