999 resultados para current stimulator


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshly dispersed sheep mesenteric lymphatic smooth muscle cells were studied at 37 degrees C using the perforated patch-clamp technique with Cs(+)- and K(+)-filled pipettes. Depolarizing steps evoked currents that consisted of L-type Ca(2+) [I(Ca(L))] current and a slowly developing current. The slow current reversed at 1 +/- 1.5 mV with symmetrical Cl(-) concentrations compared with 23.2 +/- 1.2 mV (n = 5) and -34.3 +/- 3.5 mV (n = 4) when external Cl(-) was substituted with either glutamate (86 mM) or I(-) (125 mM). Nifedipine (1 microM) blocked and BAY K 8644 enhanced I(Ca(L)), the slow-developing sustained current, and the tail current. The Cl(-) channel blocker anthracene-9-carboxylic acid (9-AC) reduced only the slowly developing inward and tail currents. Application of caffeine (10 mM) to voltage-clamped cells evoked currents that reversed close to the Cl(-) equilibrium potential and were sensitive to 9-AC. Small spontaneous transient depolarizations and larger action potentials were observed in current clamp, and these were blocked by 9-AC. Evoked action potentials were triphasic and had a prominent plateau phase that was selectively blocked by 9-AC. Similarly, fluid output was reduced by 9-AC in doubly cannulated segments of spontaneously pumping sheep lymphatics, suggesting that the Ca(2+)-activated Cl(-) current plays an important role in the electrical activity underlying spontaneous activity in this tissue. PMID: 11029279 [PubMed - indexed for MEDLINE]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Freshly isolated sheep lymphatic smooth muscle cells were studied using the perforated patch-clamp technique. Hyperpolarisation with constant-current pulses caused a time-dependent rectification evident as a depolarising 'sag' followed by an anode-break overshoot at the end of the pulse. Both sag and overshoot were blocked with 1 mM Cs+. 2. Cells were voltage clamped at -30 mV and stepped to -120 mV in 10 mV steps of 2 s duration. Steps negative to -60 mV evoked a slowly activating, non-inactivating inward current which increased in size and rate of activation with increasing hyperpolarisation. 3. The slowly activating current was reduced in Na+-free bathing solution but enhanced when the extracellular K+ concentration was increased to 60 mM. The current was significantly reduced by 1 mM Cs+ and 1 microM ZD7288 but not by 1.8 mM Ba2+. 4. The steady-state activation curve of the underlying conductance showed a threshold at -50 mV and half-maximal activation at -81 mV. Neither threshold nor half-maximal activation was significantly affected by increasing the external K+ concentration to 60 mM. 5. The frequency of spontaneous contractions and fluid propulsion in isolated cannulated segments of sheep mesenteric lymphatics were decreased by 1 mM Cs+ and by 1 microM ZD7288. 6. We conclude that sheep lymphatics have a hyperpolarisation-activated inward current similar to the If seen in sinoatrial node cells of the heart. Blockade of this current slows spontaneous pumping in intact lymphatic vessels suggesting that it is important in normal pacemaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Isolated sheep urethral cells were studied using the perforated patch clamp technique (T = 37 degrees C). Depolarizing steps ranging from -40 to -10 mV evoked an inward current that peaked within 10 ms and a slower inward current. Stepping back to the holding potential of -80 mV evoked large inward tail currents. All three currents were abolished by nifedipine (1 microM). Substitution of external Ca2+ with Ba2+ resulted in potentiation of the fast inward current and blockade of the slow current and tails. 2. Changing the chloride equilibrium potential (ECl) from 0 to +27 mV shifted the reversal potential of the tail currents from 1 +/- 1 to 27 +/- 1 mV (number of cells, n = 5). Chloride channel blockers, niflumic acid (10 microM) and anthracene-9-carboxylic acid (9AC, 1 mM), reduced the slow current and tails suggesting that these were Ca(2+)-activated Cl- currents, ICl(Ca). 4. Caffeine (10 mM) induced currents that reversed at ECl and were blocked by niflumic acid (10 microM). 5. In current clamp mode, some cells developed spontaneous transient depolarizations (STDs) and action potentials. Short exposure to nifedipine blocked the action potentials and unmasked STDs. In contrast, 9AC and niflumic acid reduced the amplitude of the STDs and blocked the action potentials. 6. In conclusion, these cells have both L-type ICa and ICl(Ca). The former appears to be responsible for the upstroke of the action potential, while the latter may act as a pacemaker current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Fast inward currents were elicited in freshly isolated sheep lymphatic smooth muscle cells by depolarization from a holding potential of -80 mV using the whole-cell patch-clamp technique. The currents activated at voltages positive to -40 mV and peaked at 0 mV. 2. When sodium chloride in the bathing solution was replaced isosmotically with choline chloride inward currents were abolished at all potentials. 3. These currents were very sensitive to tetrodotoxin (TTX). Peak current was almost abolished at 1 microM with half-maximal inhibition at 17 nM. 4. Examination of the voltage dependence of steady state inactivation showed that more than 90% of the current was available at the normal resting potential of these cells (-60 mV). 5. The time course of recovery from inactivation was studied using a double-pulse protocol and showed that recovery was complete within 100 ms with a time constant of recovery of 20 ms. 6. Under current clamp, action potentials were elicited by depolarizing current pulses. These had a rapid upstroke and a short duration and could be blocked with 1 microM TTX. 7. Spontaneous contractions of isolated rings of sheep mesenteric lymphatic vessels were abolished or significantly depressed by 1 microM TTX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known about the molecular characteristics of the voltage-activated K(+) (K(v)) channels that underlie the A-type K(+) current in vascular smooth muscle cells of the systemic circulation. We investigated the molecular identity of the A-type K(+) current in retinal arteriolar myocytes using patch-clamp techniques, RT-PCR, immunohistochemistry, and neutralizing antibody studies. The A-type K(+) current was resistant to the actions of specific inhibitors for K(v)3 and K(v)4 channels but was blocked by the K(v)1 antagonist correolide. No effects were observed with pharmacological agents against K(v)1.1/2/3/6 and 7 channels, but the current was partially blocked by riluzole, a K(v)1.4 and K(v)1.5 inhibitor. The current was not altered by the removal of extracellular K(+) but was abolished by flecainide, indicative of K(v)1.5 rather than K(v)1.4 channels. Transcripts encoding K(v)1.5 and not K(v)1.4 were identified in freshly isolated retinal arterioles. Immunofluorescence labeling confirmed a lack of K(v)1.4 expression and revealed K(v)1.5 to be localized to the plasma membrane of the arteriolar smooth muscle cells. Anti-K(v)1.5 antibody applied intracellularly inhibited the A-type K(+) current, whereas anti-K(v)1.4 antibody had no effect. Co-expression of K(v)1.5 with K(v)beta1 or K(v)beta3 accessory subunits is known to transform K(v)1.5 currents from delayed rectifers into A-type currents. K(v)beta1 mRNA expression was detected in retinal arterioles, but K(v)beta3 was not observed. K(v)beta1 immunofluorescence was detected on the plasma membrane of retinal arteriolar myocytes. The findings of this study suggest that K(v)1.5, most likely co-assembled with K(v)beta1 subunits, comprises a major component underlying the A-type K(+) current in retinal arteriolar smooth muscle cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured conductance histograms of atomic point contacts made from the noble-transition-metal alloys CuNi, AgPd, and AuPt for a concentration ratio of 1:1. For all alloys these histograms at low-bias voltage (below 300 mV) resemble those of the noble metals, whereas at high bias (above 300 mV) they resemble those of the transition metals. We interpret this effect as a change in the composition of the point contact with bias voltage. We discuss possible explanations in terms of electromigration and differential diffusion induced by current heating.