1000 resultados para Plant transformation
Resumo:
Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.
Resumo:
The purpose of this Thesis is to find the most optimal heat recovery solution for Wärtsilä’s dynamic district heating power plant considering Germany energy markets as in Germany government pays subsidies for CHP plants in order to increase its share of domestic power production to 25 % by 2020. Different heat recovery connections have been simulated dozens to be able to determine the most efficient heat recovery connections. The purpose is also to study feasibility of different heat recovery connections in the dynamic district heating power plant in the Germany markets thus taking into consideration the day ahead electricity prices, district heating network temperatures and CHP subsidies accordingly. The auxiliary cooling, dynamical operation and cost efficiency of the power plant is also investigated.
Resumo:
Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.
Resumo:
The purpose of this thesis is to find development areas for site operations in power plant construction projects delivered by Wärtsilä. The inspected operations are subcontractor management, site material management and work scheduling. The contractor's role in EPC project is to respond for engineering, procurement, and construction supervision. Geographical and cultural differences brings challenges for finding development areas as Wärtsilä delivers projects world-wide. Searching for development area is mainly made with survey, which answers were collected from the target company's site personnel. Based on the results, with good planning and preparation various problems would be avoided. An external view for the thesis was collected by an expert interview, which was held to three expe-rienced construction operating executives. Interviewees believed that with the se-lection of right site personnel and clearly defined areas of responsibility will great-ly affect the outcome of the project. Some of the theory has been collected from areas, which have helped to under-stand the inspected operations on site. Improving competence knowledge has been important due to the broad scope of work and the author’s inexperience of the topic. Also generally effective practices from construction projects has been col-lected to the theory part. Functionality of general practices have been reflected together with the results of empirically collected data for Wärtsilä's projects. As a result, a model was generated where development proposals and the benefits from new procedures were presented.
Resumo:
Ellagitannins are secondary metabolites that are produced by plants. Among other features, they are assumed to function as plants’ defensive compounds against plant-eating herbivores. This thesis focuses on a theory, which suggests that the biological activity of ellagitannins is based on their tendency to oxidize at the highly alkaline gut conditions of insect herbivores (oxidative activity). To study the biological activities of ellagitannins, a wide variety of structurally different ellagitannins were purified from different plant species by using liquid chromatographic techniques. The structures were characterized with the aid of spectrometric methods. Based on the acquired data, it was also possible to create a scheme, which enables the classification and even identification of ellagitannins from plant extracts without the need to isolate each compound for individual characterization. The biological activities of ellagitannins were determined with methods that are based on the abilities of the compounds to scavenge radicals, chelate iron ions, and on their rate of oxidation at high pH. The results showed that ellagitannins possess oxidative activities both at high and neutral pH, and that their activities depend on structure. The occurrence, distribution and content of ellagitannins in Finnish plant species were also studied. The specific ellagitannin profiles of the studied plant species were found to correlate well with their taxonomic classification.
Resumo:
This work focuses on the 159.5 kW solar photovoltaic power plant project installed at the Lappeenranta University of Technology in 2013 as an example of what a solar plant project could be in Finland. The project consists of a two row carport and a flat roof installation on the roof of the university laboratories. The purpose of this project is not only its obvious energy savings potential but also to serve as research and teaching laboratory tool. By 2013, there were not many large scale solar power plants in Finland. For this reason, the installation and data experience from the solar power plant at LUT has brought valuable information for similar projects in northern countries. This work includes a first part for the design and acquisition of the project to continue explaining about the components and their installation. At the end, energy produced by this solar power plant is studied and calculated to find out some relevant economical results. For this, the radiation arriving to southern Finland, the losses of the system in cold weather and the impact of snow among other aspects are taken into account.
Resumo:
Variations in the estrogenic activity of the phytoestrogen-rich plant, Pueraria mirifica, were determined with yeast estrogen screen (YES) consisting of human estrogen receptors (hER) hERα and hERβ and human transcriptional intermediary factor 2 (hTIF2) or human steroid receptor coactivator 1 (hSRC1), respectively, together with the β-galactosidase expression cassette. Relative estrogenic potency was expressed by determining the β-galactosidase activity (EC50) of the tuber extracts in relation to 17β-estradiol. Twenty-four and 22 of the plant tuber ethanolic extracts interacted with hERα and hERβ, respectively, with a higher relative estrogenic potency with hERβ than with hERα. Antiestrogenic activity of the plant extracts was also determined by incubation of plant extracts with 17β-estradiol prior to YES assay. The plant extracts tested exhibited antiestrogenic activity. Both the estrogenic and the antiestrogenic activity of the tuber extracts were metabolically activated with the rat liver S9-fraction prior to the assay indicating the positive influence of liver enzymes. Correlation analysis between estrogenic potency and the five major isoflavonoid contents within the previously HPLC-analyzed tuberous samples namely puerarin, daidzin, genistin, daidzein, and genistein revealed a negative result.
Resumo:
The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst) DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.
Resumo:
The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM). Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP), beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.
Resumo:
In Brazil, the cassava leaf meal (CLM) has been used to strive against undernourishment because it is a high source of vitamins and minerals. However, the wide variation in the chemical composition of the different cultivars, as well as their antinutritional substances may be a restriction to their uses. The levels of some antinutrients in CLM from five cultivars at three ages of the plant (TAP) were investigated, in order to select the cultivars and plant ages that would be more appropriate for human consumption. The lowest contents of antinutrients were observed in the 12-month old plants, except for nitrate and hemagglutinin from which the lowest contents were found for the 17 month old ones. The cultivar IAC 289-70 had the lowest antinutrient levels, except for saponin and oxalate. Thus, the cultivar IAC 289-70 at 12 months is the most appropriate for human consumption.