995 resultados para Plant substrate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the comparative studies of epitaxial SiC films grown on silicon-on-insulator (SOI) and Si bulk substrates. The silicon-over-layer (SOL) on the SOI has been thinned down to different thicknesses, with the thinnest about 10 nm. It has been found that the full-width-at-half-maxim in the X-ray diffraction spectrum from the SiC films decreases as the SOL thickness decreases, indicating improved quality of the SiC film. A similar trend has also been found in the Raman spectrum. One of the potential explanations for the observation is strain accommodation by the ultra-thin SOI substrate. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly ordered AlN nanowire arrays were synthesized via a simple physical vapor deposition method on sapphire substrate. The nanowires have an extremely sharp tip < 10 nm, with the average length around 3 mu m. Raman spectroscopy analysis on the AlN nanowire arrays revealed that the lifetime of the phonons is shorter than that in bulk AlN. The transmission spectra of the AlN nanowires showed a blueshift similar to 0.27 eV at the absorption edge with that of the bulk AlN, which is closely related to the small size of the nanowires. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of the thickness and layer number of the low-temperature A1N interlayer (LT-A1N IL) on the stress relaxation and the crystal quality of GaN epilayers grown on Si (111) substrate by metalorganic chemical vapor deposition. It is found that the stress decreases with the increase of the LT-AIN IL thickness, but the crystal quality of the GaN epilayer goes worse quickly when the LT-AIN IL thickness is larger than 16 nm. This is because the increase of the LT-AIN IL thickness will increase the coalescence thickness of its upper GaN layer, which sensitively affects the crystal quality of the epilayer. Using multiple LT-AIN ILs is an effective method not only to reduce the stress, but also to improve the crystal quality of the GaN epilayer. With the increase of the interlayer number, the probability that dislocations are blocked increases and the probability that dislocations are produced at interfaces decreases. Thus, dislocations in the most upper part of GaN are reduced, resulting in the improvement of the crystal quality. Finally, it is suggested that when the total thickness of the epilayer is fixed, both the thickness and the number of the LT-AIN IL should be carefully designed to reduce the stress and improve the crystal quality of the epilayer simultaneously. (c) 2004 Elsevier B.V.. All rights reserved.