996 resultados para Peptide mapping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved probe interferometry was used to obtain complete density mapping of laser produced plasmas. The plasma was produced by symmetrical irradiation of thin targets, to be used for short pulse delayed interaction experiments. The progress in the plasma characterization due to the use of a picosecond pulse probe is reported, and the relative merits of different target designs are also discussed. The two-dimensional density maps obtained appear to be in substantial agreement with two-dimensional hydrodynamic code predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PF4 has previously been shown to have potent inhibitory effects on myoactivity of somatic muscle strips from the nematode, Ascaris suum. This study examined the bioactivity and metabolic stability of position 2- and position 5-modified analogues of PF4. Although the analogues [Leu(5)] PF4, [Ala(2)]PF4, [Gly(2)]PF4, [Ala(2),Leu(5)]PF4, and [Gly(2),Leu(5)]PF4 all had qualitatively similar inhibitory effects on A. suum somatic muscle strips, their effects were quantitatively distinguishable and had the order of potency: PF4 = [Leu(5)] PF4 >> [Ala(2)]PF4 = [Ala(2),Leu(5)] PF4 >> [Gly(2)] PF4 = [Gly(2),Leu(5)] PF4. Leu(5) for Ile(5) substitutions in PF4 did not alter the activity of this peptide; however, Gly(2)/Ala(2) for Pro(2) substitutions reduced, but did not abolish, peptide activity. Peptide stability studies revealed that [Gly(2)]PF4(2-7) and -(3-7) and [Ala(2)]PF4(2-7), -(3-7), and -(4-7) fragments were generated following exposure to A. suum somatic muscle strips. However, the parent peptide (PF4) was not metabolized and appeared to be resistant to the sequential cleavages of native aminopeptidases. Observed analogue metabolism appeared to be due to the activity of released aminopeptidases as identical fragments were generated by incubation in medium that had been exposed to somatic muscle strips and from which the strips had been removed prior to peptide addition. It was found that the muscle stretching and bath mixing characteristics of the tension assay led to more effective release of soluble enzymes from muscle strips and thus greater peptide degradation. These studies reveal that Pro(2) in PF4 is not essential for the biological activity of this peptide; however, it does render the peptide resistant to the actions of native nematode aminopeptidases. Copyright (C) 1996 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous FMRF amide-related peptides (FaRPs) have been isolated and sequenced from extracts of free-living and parasitic nematodes. The most abundant FaRP identified in ethanolic/methanolic extracts of the parasitic forms, Ascaris suum and Haemonchus contortus and from the free-living nematode, Panagrellus redivivus, was KHEYLRF amide (AF2). Analysis of the nucleotide sequences of cloned FaRP-precursor genes from C. elegans and, more recently, Caenorhabditis vulgaris identified a series of related FaRPs which did not include AF2. An acid-ethanol extract of Caenorhabditis elegans was screened radioimmunometrically for the presence of FaRPs using a C-terminally directed FaRP antiserum. Approximately 300 pmols of the most abundant immunoreactive peptide was purified to homogeneity and 30 pmols was subjected to Edman degradation analysis and gas-phase sequencing. The unequivocal primary structure of the heptapeptide, Lys-His-Glu-Tyr-Leu-Arg-Phe-NH2 (AF2) was determined following a single gas-phase sequencing run. The molecular mass of the peptide was determined using a time-of-flight mass spectrometer and was found to be 920 (MH(+))(-), which was consistent with the theoretical mass of C-terminally amidated AF2. These results indicate that C. elegans possesses more than one FaRP gene. (C) 1995 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultrastructurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radioimmunoassay of acid-ethanol extracts of the worms detected 8.3 pmol/g and 4.7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4.9 pmol/g and 4.3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.