997 resultados para Passive synthesis
Resumo:
Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The fine-particle NASICON family of materials, MZr2P3O12(where M = Na, K, ½Ca and ¼Zr) and NbZrP3O12, have been prepared by the combustion of aqueous heterogeneous mixtures of stoichiometric amounts of metal nitrate, zirconyl nitrate, niobium phosphate, diammonium hydrogen phosphate, ammonium perchlorate and carbohydrazide (CH) at 400 °C. The formation of NASICON materials was confirmed by powder X-ray diffraction (XRD), IR, solid-state (31P) NMR spectroscopy and thermal expansion coefficient measurements. The combustion-synthesized NASICON powders have an average agglomerate size of 9�13 µm with a specific surface area varying from 8 to 28 m2 g�1. The powders pelletized and sintered in the range 1100�1200 °C for 5 h achieved 95�97% theoretical density and showed fine-grain microstructure. The coefficient of thermal expansion of a sintered compact was measured up to 500 °C and ranged from �1.5 × 10�6°C�1 to 1.0 × 10�6°C�1 depending on the composition.
Resumo:
Fine-particle, sinter-active yttria has been prepared by combustion of a redox compound, Y(N2H3COO)3·3H2O and mixtures of Y(N2H3COO)3·3H2O�NH4NO3 or NH4ClO4 as well as yttrium nitrate and hydrazine-based fuels. The fineparticle nature of the combustion-derived yttria has been investigated using powder density, particle size and BET surface area measurements. The uniaxially, cold-pressed fine-particle yttria when sintered at 1450�1500 °C achieved 98% theoretical density and showed a fine-grain (1�2 µm) microstructure.
Resumo:
Zn/acetic acid reaction of DDHQ esters 1 a-d gave the saturated acids 3 a-d and the hydrocarbons 7 a-d. The intermediacy of the aldehydes 10 and 11 in the formation of the products has been established. Oxidation of hydrocarbons 7a and 7b gave the corresponding tropones (5a and 5b).
Resumo:
A four step cyclopentaannulation methodology starting from allyl alcohols using 5-exo-trig radical cyclisation as the key reaction, and its application to the total synthesis of 4-epibakkenolide is described.
Resumo:
A fast, efficient and novel method of preparation of hydroxyapatite using microwaves has been described.