999 resultados para POLYGLYCOLIC ACID
Resumo:
Abstract In this study, our aim was to consider the production of fish crackers using Carassius gibelio and to investigate the fatty acid profile and sensory quality of the fish crackers. Fish cracker mixture with a ratio 3.5:1.5 (minced fish/wheat starch) was obtained. Based on the total minced fish and starch level, 1.75% salt, 0.25% black pepper, 2% sunflower oil, 1% baking powder and 10% cold water (4 °C) were added and stirred until a homogenous mixture was obtained. The mixture was compressed in an extractor and baked. The moisture content of minced fish (CMF), cracker dough (CD) and crackers (CCr) was 77.73 ± 0.14%, 63.10 ± 2.18% and 7.95 ± 0.67% respectively. The n6/n3 ratio of crackers was 2.61 ± 0.20, PUFA/SFA ratio 2.28 ± 0.06 and DHA/EPA ratio 1.81 ± 0.01. The overall acceptability score obtained by the sensory evaluation of panelists was very high (8.09 ± 0.25).
Resumo:
Abstract Postharvest lettuce often lose water, thus affecting both its market value and consumer acceptance. However, the mechanism of the water-loss is still waiting well exploration. The aim of the present study was to investigate the effect of a foliar application of ABA on the fresh weight-loss and the chlorophyll content of postharvest lettuce as well as its association with the regulation of stomata. The present data demonstrated that exogenously application of ABA, in a concentration range of 0 to 100 µM, significantly lowered the fresh weight-loss of postharvest lettuce. ABA also delayed chlorophyll reduction during ambient storage, but this protective effect was ABA concentration-dependent. Among the tested ABA concentrations, 50 µM or lower ABA produced an inhibition effect on chlorophyll degradation in postharvest lettuce leaves. The results demonstrated that the exogenous ABA treatment can obviously reduce the transpiration rate of lettuce leaves by promoting the stomatal closure of postharvest lettuce, therefore eventually delay fresh weight-loss. The present study primarily showed that the application of exogenous ABA, which originated from a naturally-produced phytohormone, has a great potential in retaining the freshness of postharvest lettuce that is stored in an ambient condition, although possible practical application still need to be further evaluated.
Resumo:
Abstract Germinated grains have been known as sources of Gamma-aminobutyric acid (GABA) that provide beneficial effects for human health. This study was aimed to investigate GABA production, dietary fiber, antioxidant activity, and the effect of cooking on GABA loss in germinated legumes and sesame. The highest GABA content was found in germinated mung bean, (0.8068 g kg-1, 24 h incubation) followed by germinated soybean, germinated black bean and soaked sesame. Beside GABA, dietary fiber content also increased in all grains during germination where the insoluble dietary fiber fractions were always found in higher proportions to soluble dietary fiber fractions. Our results also confirmed that germinated mung bean is a rich source of GABA and dietary fibers. Microwave cooking resulted in the smallest loss of GABA in mung bean and sesame, while steaming led to the least GABA content loss in soybean and black bean. Therefore microwave cooking and steaming are the most recommended cooking processes to preserve GABA in germinated legumes and sesame.
Resumo:
Abstract The research work aimed at investigating the effect of pre-harvest gibberellic acid (GA3) treatment on the quality of ‘Obilnaja’ and ‘Black Star’ Japanese plum varieties. GA3 was sprayed onto the trees during the fruit color break at 0, 25, 50, 75, and 100 ppm concentrations. After pre-cooling, the plums were placed in modified atmosphere packages and exposed to the following conditions as follows: short storage-transportation (ST) [20 days at 2 °C and 90% relative humidity (RH)]; distribution center (DC) (5 days at 6 °C and 80% RH), and shelf life conditions (SL) (2 days at 20 °C and 70% RH). Pre-harvest GA3 treatments increased the fruit weight and size. Treatment of GA3 at 50, 75, and 100 ppm increased the fruit flesh firmness and total soluble substances (TSS) values in both the plum varieties during storage, transport, and marketing; it also limited the weight loss during the marketing process. Treatment of GA3 had no significant effects on the color, titratable acidity (TA), and the total phenolic and antioxidant activity values of plums. Pre-harvest GA3 treatment at 50 ppm GA3 can be thus recommended for both the plum varieties due to its effect on the fruit quality.
Resumo:
y+LAT1 is a transmembrane protein that, together with the 4F2hc cell surface antigen, forms a transporter for cationic amino acids in the basolateral plasma membrane of epithelial cells. It is mainly expressed in the kidney and small intestine, and to a lesser extent in other tissues, such as the placenta and immunoactive cells. Mutations in y+LAT1 lead to a defect of the y+LAT1/4F2hc transporter, which impairs intestinal absorbance and renal reabsorbance of lysine, arginine and ornithine, causing lysinuric protein intolerance (LPI), a rare, recessively inherited aminoaciduria with severe multi-organ complications. This thesis examines the consequences of the LPI-causing mutations on two levels, the transporter structure and the Finnish patients’ gene expression profiles. Using fluorescence resonance energy transfer (FRET) confocal microscopy, optimised for this work, the subunit dimerisation was discovered to be a primary phenomenon occurring regardless of mutations in y+LAT1. In flow cytometric and confocal microscopic FRET analyses, the y+LAT1 molecules exhibit a strong tendency for homodimerisation both in the presence and absence of 4F2hc, suggesting a heterotetramer for the transporter’s functional form. Gene expression analysis of the Finnish patients, clinically variable but homogenic for the LPI-causing mutation in SLC7A7, revealed 926 differentially-expressed genes and a disturbance of the amino acid homeostasis affecting several transporters. However, despite the expression changes in individual patients, no overall compensatory effect of y+LAT2, the sister y+L transporter, was detected. The functional annotations of the altered genes included biological processes such as inflammatory response, immune system processes and apoptosis, indicating a strong immunological involvement for LPI.
Resumo:
To evaluate the effectiveness of gibberellic acid (GA3) in breaking rice seed dormancy and the use of alpha-amylase enzyme activity as an indicator of the dormancy level, seed from the intensively dormant irrigated cultivar Urucuia were used. The seeds were submitted to a pre-drying process in a forced air circulation chamber under 40ºC during 7 days and submersed in 30 mL of GA3 solution under 0, 10, 30 and 60 mg/L H2O concentrations, during 2, 24 and 36 hours. After the treatments, the alpha-amylase activity was determined by using the polyacrilamide electrophoresis and spectrophotometry. At the same time, the germination test was made. The results indicated a gain in germination and in alpha-amylase activity in higher concentrations and soaking time of seeds in GA3. These observations support the conclusion that soaking seed in 60 mg GA3/L during 36 hours can be used as a quick and efficient treatment in breaking rice seed dormancy and is equivalent to the forced air circulation chamber at 40ºC during 7 days. The alpha-amylase enzyme activity proved to be as an efficient marker of the seeds dormancy level.
Resumo:
Most tropical forage grass species have dormant seeds, which reduce percentages in germination tests. The objective of this study was to evaluate H2SO4 scarification effects on seed dormancy releasing, through germination time (T50) and variability among germination test replicates, in 630, 94 and 82 seed samples of B. brizantha, B. humidicola and P. maximum, respectively, tested at the Central Seed Testing Laboratory, Campinas, Brazil, from 1991 to 1999. Germination tests used two 4 x 100 replicates of intact and scarified seeds (15-, 10-, 5-minute treatments, respectively). Mean germination time (T50) and variability among germination replicates were also analysed. Statistical analysis was performed by t-test paired samples for means. Scarification promoted general decreases in T50, while variability among germination test replicates was reduced in B. brizantha. Scarification increase germination in B. brizantha and P. maximum, but is deleterious in B. humidicola.
Resumo:
A new synthetic pathway to analogues of the aglucones of naturally occurring cyclic hydroxamic acids (2,4-dihydroxy-l,4-benzoxazin-3-ones) has been developed. The new pathway involves the coupling of substituted nitrophenols wdth /-propyl-abromo- O-methoxymethylglycolate. These materials were reductively cyclised to reveal the hydroxamic acid functionality. Removal of the C-2 0-methoxymethyl protecting group was achieved chemoselectively using boron trichloride. The analogue 7-methoxy-2,4-dihydroxy-l,4-benzoxazin-3-one (DIMBOA) was assayed with papain and a semilog plot of activity of papain in the presence of excess DIMBOA was found to be linear. A single exponential equation was suggested as the model for kinetic analysis. '^ Nuclear magnetic resonance (NMR) spectra of a couple of hydroxamates were acquired as reference standards for future mechanistic studies of these compounds as thiol protease inhibitors. A 10% '^-labeled sample ofDIMBOA was also prepared for future mechanistic studies using NMR techniques.
Resumo:
Gamma-aminobutyric acid (GAB A) is a ubiquitous non-protein amino acid synthesized via the decarboxylation of L-glutamate in a reaction catalyzed by the cytosolic enzyme L-glutamate decarboxylase (GAD). In animals it functions as an inhibitory neurotransmitter. In plants it accumulates rapidly in response to various stresses, but its function remains unclear. The hypothesis that GABA accumulation in leaf tissue may function as a plant resistance mechanism against phytophagous insect activity was investigated. GABA accumulation in response to mechanical stimulation, mechanical damage and insect activity was demonstrated. In wt tobacco (Nicotiana tabacum cv Samsun), mechanical stimulation or damage caused GABA to accumulate within 2 min from mean levels of 14 to 37 and 1~9 nmol g-l fresh weight (FW), respectively. In the transgenic tobacco strain CaMVGAD27c overexpressing Petunia GAD, the same treatments caused GABA to accumulate from 12 to 59 and 279 nmol g-l FW, respectively. In the transgenic tobacco strain CaMVGADilC 11 overexpressing Petunia GAD lacking an autoinhibitory domain, mechanical stimulation or damage caused GABA to accumulate from 180 to 309 and 630 nmol g-l FW, respectively. Ambulatory activity by tobacco budworm (TBW) larvae (Heliothis virescens) on leaves of CaMVGAD27c tobacco caused GABA to accumulate from 28 to 80 nmol g-l FW within 5 min. Ambulatory and leaf-rolling activity by oblique banded leaf roller (OBLR) larvae (Choristoneura rosaceana cv Harris) on wt soybean leaves (Glycine max cv Harovinton) caused GABA to accumulate from 60 to 1123 nmol g-l FW within 20 min. Increased GABA levels in leaf tissue were shown to affect phytophagous preference in TBW larvae presented with wt and transgenic tobacco leaves. When presented with leaves of Samsun wt and CaMVGAD27c plants, TBW larvae consumed more wt leaf tissue (640 ± 501 S.D. mm2 ) than transgenic leaf tissue (278 ± 338 S.D. mm2 ) nine times out of ten. When presented with leaves of Samsun wt and CaMVGAD~C11 plants, TBW larvae consumed more transgenic leaf tissue (1219 ± 1009 S.D. mm2 ) than wt leaf tissue (28 ± 31 S.D. mm2 ) ten times out of ten. These results indicate that: (1) ambulatory activity of insect larvae on leaves results in increased GABA levels, (2) transgenic tobacco leaves with increased capacity for GABA synthesis deter feeding, and (3) transgenic tobacco leaves with constitutively higher GABA levels stimulate feeding.