992 resultados para Open channels
Resumo:
Whole-cell and inside-out patch-clamp techniques were used to assess the action of a well-known dye, Evans blue, on membrane currents in bladder isolated smooth muscle cells from sheep. In whole cells Evans blue dose-dependently increased the outward current by up to fivefold. In contrast, Evans blue had no effect on inward Ca2+ current. The effect on outward current was abolished or reduced if the cells were bathed in Ca2+-free solution, iberiotoxin (5 x 10(-8) M), or charybdotoxin (5 x 10(-8) M), but was unaffected by externally applied caffeine (5 mM) or in cells exposed to heparin (1 mg/ml) via the patch pipette. In inside-out patches bathed in a Ca2+ concentration of 5 x 10(-7) M, Evans blue (10(-4) M) increased the open probability of large-conductance (298-pS) Ca2+-dependent K+ channels (BK channels), shifting the half maximal-activation voltage by -70 mV. We conclude that Evans blue dye acts as an opener of BK channels.
Resumo:
Freshly dispersed cells from sheep urinary bladder were voltage clamped using the whole cell and inside-out patch-clamp technique. Cibacron and Basilen blue increased outward current in a dose-dependent manner with a half-maximal response at 10(-5) M. Suramin, in concentrations to 10(-3) M, had no such effect. The Cibacron blue response was abolished in Ca2+-free physiological salt solution, suggesting that it was acting on a Ca2+-dependent current. Similarly, the Cibacron blue-sensitive current was significantly attenuated by charybdotoxin. Cibacron blue did not modulate inward current nor were its effects modified by caffeine or heparin, suggesting that its effect on outward current was not secondary to an increase in intracellular Ca2+. Application of 10(-4) M Cibacron blue to the inside membrane of excised patches caused a rapid increase in open probability of a large-conductance (300 pS) K+ channel. These results suggest that Cibacron blue is a potent activator of a Ca2+-dependent outward current in bladder smooth muscle cells in addition to its action as a purinergic blocker.