994 resultados para Informatik


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Forschungsarbeit siedelt sich im Dreieck der Erziehungswissenschaften, der Informatik und der Schulpraxis an und besitzt somit einen starken interdisziplinären Charakter. Aus Sicht der Erziehungswissenschaften handelt es sich um ein Forschungsprojekt aus den Bereichen E-Learning und Multimedia Learning und der Fragestellung nach geeigneten Informatiksystemen für die Herstellung und den Austausch von digitalen, multimedialen und interaktiven Lernbausteinen. Dazu wurden zunächst methodisch-didaktische Vorteile digitaler Lerninhalte gegenüber klassischen Medien wie Buch und Papier zusammengetragen und mögliche Potentiale im Zusammenhang mit neuen Web2.0-Technologien aufgezeigt. Darauf aufbauend wurde für existierende Autorenwerkzeuge zur Herstellung digitaler Lernbausteine und bestehende Austauschplattformen analysiert, inwieweit diese bereits Web 2.0-Technologien unterstützen und nutzen. Aus Sicht der Informatik ergab sich aus der Analyse bestehender Systeme ein Anforderungsprofil für ein neues Autorenwerkzeug und eine neue Austauschplattform für digitale Lernbausteine. Das neue System wurde nach dem Ansatz des Design Science Research in einem iterativen Entwicklungsprozess in Form der Webapplikation LearningApps.org realisiert und stetig mit Lehrpersonen aus der Schulpraxis evaluiert. Bei der Entwicklung kamen aktuelle Web-Technologien zur Anwendung. Das Ergebnis der Forschungsarbeit ist ein produktives Informatiksystem, welches bereits von tausenden Nutzern in verschiedenen Ländern sowohl in Schulen als auch in der Wirtschaft eingesetzt wird. In einer empirischen Studie konnte das mit der Systementwicklung angestrebte Ziel, die Herstellung und den Austausch von digitalen Lernbausteinen zu vereinfachen, bestätigt werden. Aus Sicht der Schulpraxis liefert LearningApps.org einen Beitrag zur Methodenvielfalt und zur Nutzung von ICT im Unterricht. Die Ausrichtung des Werkzeugs auf mobile Endgeräte und 1:1-Computing entspricht dem allgemeinen Trend im Bildungswesen. Durch die Verknüpfung des Werkzeugs mit aktuellen Software Entwicklungen zur Herstellung von digitalen Schulbüchern werden auch Lehrmittelverlage als Zielgruppe angesprochen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geometric packing problems may be formulated mathematically as constrained optimization problems. But finding a good solution is a challenging task. The more complicated the geometry of the container or the objects to be packed, the more complex the non-penetration constraints become. In this work we propose the use of a physics engine that simulates a system of colliding rigid bodies. It is a tool to resolve interpenetration conflicts and to optimize configurations locally. We develop an efficient and easy-to-implement physics engine that is specialized for collision detection and contact handling. In succession of the development of this engine a number of novel algorithms for distance calculation and intersection volume were designed and imple- mented, which are presented in this work. They are highly specialized to pro- vide fast responses for cuboids and triangles as input geometry whereas the concepts they are based on can easily be extended to other convex shapes. Especially noteworthy in this context is our ε-distance algorithm - a novel application that is not only very robust and fast but also compact in its im- plementation. Several state-of-the-art third party implementations are being presented and we show that our implementations beat them in runtime and robustness. The packing algorithm that lies on top of the physics engine is a Monte Carlo based approach implemented for packing cuboids into a container described by a triangle soup. We give an implementation for the SAE J1100 variant of the trunk packing problem. We compare this implementation to several established approaches and we show that it gives better results in faster time than these existing implementations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopy of the 1S-2S transition of antihydrogen confined in a neutral atom trap and comparison with the equivalent spectral line in hydrogen will provide an accurate test of CPT symmetry and the first one in a mixed baryon-lepton system. Also, with neutral antihydrogen atoms, the gravitational interaction between matter and antimatter can be tested unperturbed by the much stronger Coulomb forces.rnAntihydrogen is regularly produced at CERN's Antiproton Decelerator by three-body-recombination (TBR) of one antiproton and two positrons. The method requires injecting antiprotons into a cloud of positrons, which raises the average temperature of the antihydrogen atoms produced way above the typical 0.5 K trap depths of neutral atom traps. Therefore only very few antihydrogen atoms can be confined at a time. Precision measurements, like laser spectroscopy, will greatly benefit from larger numbers of simultaneously trapped antihydrogen atoms.rnTherefore, the ATRAP collaboration developed a different production method that has the potential to create much larger numbers of cold, trappable antihydrogen atoms. Positrons and antiprotons are stored and cooled in a Penning trap in close proximity. Laser excited cesium atoms collide with the positrons, forming Rydberg positronium, a bound state of an electron and a positron. The positronium atoms are no longer confined by the electric potentials of the Penning trap and some drift into the neighboring cloud of antiprotons where, in a second charge exchange collision, they form antihydrogen. The antiprotons remain at rest during the entire process, so much larger numbers of trappable antihydrogen atoms can be produced. Laser excitation is necessary to increase the efficiency of the process since the cross sections for charge-exchange collisions scale with the fourth power of the principal quantum number n.rnThis method, named double charge-exchange, was demonstrated by ATRAP in 2004. Since then, ATRAP constructed a new combined Penning Ioffe trap and a new laser system. The goal of this thesis was to implement the double charge-exchange method in this new apparatus and increase the number of antihydrogen atoms produced.rnCompared to our previous experiment, we could raise the numbers of positronium and antihydrogen atoms produced by two orders of magnitude. Most of this gain is due to the larger positron and antiproton plasmas available by now, but we could also achieve significant improvements in the efficiencies of the individual steps. We therefore showed that the double charge-exchange can produce comparable numbers of antihydrogen as the TBR method, but the fraction of cold, trappable atoms is expected to be much higher. Therefore this work is an important step towards precision measurements with trapped antihydrogen atoms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.