995 resultados para GEOLOGICAL-MATERIALS
Resumo:
We have proposed a new superluminescent diodes (SLD) aimed at wide spectrum-quantum dot superluminescent diodes (QD-SLD), which is characterized by the introduction of a self-assembled asymmetric quantum dot pairs active region into conventional SLID structure. We investigated the structure and optical properties of a bilayer sample with different InAs deposition amounts in the first and second layer. We find that the structure of a self-assembled asymmetric quantum dot pairs can operate up to a 150 nm spectral width. In addition, as the first QDs' density can modulate the density of the QDs on the second layer, due to relatively high QDs density of the first layer, we can get the strong PL intensity from a broad range. We think that for the broad spectral width and the strong PL intensity, this structure can be a promising candidate for QW-SLD. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Si-based nanomaterials are some new photoeletronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e. g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x < 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
We report on the observation of resonant Raman scattering in low-temperature-grown AlGaAs/GaAs structure. Two kinds of excitation lights, 632.8 and 488 nm laser lines, were used to detect scattering signal from different regions based on different penetration depths. Under the outgoing resonant condition, up to fourth-order resonant Raman peaks were observed in the low-temperature-grown AlGaAs alloy, owing to a broad exciton luminescence in low-temperature-grown AlGaAs alloy induced by intrinsic defects and As cluster after post-annealing. These resonant peaks were assigned according to their fundamental modes. Among the resonant peaks, besides the overtones of the GaAs- or AlAs-like mode, there exist combination bands of these two kinds of modes. In addition, a weak scattering peak similar to the bulk GaAs longitudinal optical mode was observed in low-temperature Raman experiments. We consider the weak signal correlated with GaAs clusters appearing in AlGaAs alloys. The accumulation of GaAs in AlGaAs alloys was enhanced after annealing at high temperatures. A detailed study of the dependence of vibration modes on measuring temperature and post-annealing conditions is given also. In light of our experiments, it is suggested that a Raman scattering experiment is a sensitive microscopic probe of local disorder and, especially performed at low temperature, is a superior method in detecting and analyzing the weak interaction between phonons and electrons.
Resumo:
The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.