997 resultados para Chl a
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.
Resumo:
Trichodesmium sp. isolated from the Great Barrier Reef lagoon was cultured in artificial seawater media containing a range of salinities. Trichodesmium sp. actively grew over a wide range of salinities (22 to 43 psu) and hence can be classed as euryhaline. Maximum growth occurred with salinities in the range 33 to 37 psu. Chl a content and alkaline phosphatase activity were found to increase with salinity over the range 22 to 43 psu, but the N-2 fixation rate was reduced at salinities below and above the range for maximum growth. Growth in media exhibiting maximum growth was characterised by well-dispersed cultures of filaments, while significant aggregations of filaments formed in other media. It is proposed that the tendency for Trichodesmium filaments to aggregate in media with salinities outside the range for maximum growth is an opportunistic response to a deficiency of cellular nitrogen, which results from the reduced N-2 fixation rates, and the aggregation occurs in order to enhance the uptake of combined N released within the aggregates and/or the N-2 fixation within the aggregates.
Resumo:
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m(-2)), and productive (up to 110 mg O-2 m(-2) h(-1)) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O-2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92-995 mg chl a m(-2)) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.
Resumo:
The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50 degrees S and 70 degrees S, for the period ( 1997 - 2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50 degrees S and 60 degrees S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60 degrees S. Marked interannual variability in CHL occurs south of 60 degrees S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions ( aerosol precursors) are being produced over the SIZ in spring ( October - December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Resumo:
Heating the scleractinian coral, Montipora monasteriata (Forskal 1775) to 32 degrees C under < 650 mu mol quanta m(-2) s(-1) led to bleaching in the form of a reduction in Peridinin, xanthophyll pool, chlorophyll c(2) and chlorophyll a, but areal dinoflagellates densities did not decline. Associated with this bleaching, chlorophyll (Chl) allomerization and dinoflagellate xanthophyll cycling increased. Chl allomerization is believed to result from the interaction of Chl with singlet oxygen (O-1(2)) or other reactive oxygen species. Thermally induced increases in Chl allomerization are consistent with other studies that have demonstrated that thermal stress generates reactive oxygen species in symbiotic dinoflagellates. Xanthophyll cycling requires the establishment of a pH gradient across the thylakoid membrane. Our results indicate that, during the early stages of thermal stress, thylakoid membranes are intact. Different morphs of M. monasteriata responded differently to the heat stress applied: heavily pigmented coral hosts taken from a high-light environment showed significant reductions in green fluorescent protein (GFP)-like homologues, whereas nonhost pigmented high-light morphs experienced a significant reduction in water-soluble protein content. Paradoxically, the more shade acclimated cave morph were, based on Chl fluorescence data, less thermally stressed than either of the high-light morphs. These results Support the importance of coral pigments for the regulation of the light environment within the host tissue.
Resumo:
Following rapid lesion progression of white syndrome in tabular Acropora spp., the white bare skeleton gradually changes to green, a result of endolithic algae blooms (primarily Ostreobium spp.). Endolithic algal biomass and chlorophyll concentration were found to be an order of magnitude higher in the green zone compared with healthy appearing parts of each colony. Chl b to Chl a ratio increased from 1:1.6 in the healthy area to 1:2 and 1:3.5 in the white exposed skeleton and green zones, respectively. These observations together with pulse amplitude modulated (PAM) fluorometry suggest photoacclimation of the endoliths in the green zone. Histopathological microscopy revealed that the endolithic algal filaments penetrate the coral tissue. This study highlights the interaction of endolithic algae with both the skeleton and host tissue. This may have a critical role in the processes that accompany the post-disease state in reef-building corals.