995 resultados para Breast - Ultrasonic imaging
Resumo:
PURPOSE: To develop a breathhold method for black-blood viability imaging of the heart that may facilitate identifying the endocardial border. MATERIALS AND METHODS: Three stimulated-echo acquisition mode (STEAM) images were obtained almost simultaneously during the same acquisition using three different demodulation values. Two of the three images were used to construct a black-blood image of the heart. The third image was a T(1)-weighted viability image that enabled detection of hyperintense infarcted myocardium after contrast agent administration. The three STEAM images were combined into one composite black-blood viability image of the heart. The composite STEAM images were compared to conventional inversion-recovery (IR) delayed hyperenhanced (DHE) images in nine human subjects studied on a 3T MRI scanner. RESULTS: STEAM images showed black-blood characteristics and a significant improvement in the blood-infarct signal-difference to noise ratio (SDNR) when compared to the IR-DHE images (34 +/- 4.1 vs. 10 +/- 2.9, mean +/- standard deviation (SD), P < 0.002). There was sufficient myocardium-infarct SDNR in the STEAM images to accurately delineate infarcted regions. The extracted infarcts demonstrated good agreement with the IR-DHE images. CONCLUSION: The STEAM black-blood property allows for better delineation of the blood-infarct border, which would enhance the fast and accurate measurement of infarct size.
Resumo:
Purpose: Letrozole (LET) has recently been shown to be superior to tamoxifen for postmenopausal patients (pts). In addition, LET radiosensitizes breast cancer cells in vitro. We conducted a phase II randomized study to evaluate concurrent and sequential radiotherapy (RT)-LET in the adjuvant setting. We present here clinical results with a minimum follow-up of 24 months. Patients and Methods: Postmenopausal pts with early-stage breast cancer were randomized after conservative surgery to either: A) concurrent RT-LET (LET started 3 weeks before the first day of RT) or B) sequential RT-LET (LET started 3 weeks after the end of RT). Whole breast RT was delivered to a total dose of 50 Gy. A 10-16 Gy boost was allowed according to age and pathological prognostic factors. Pts were stratified by center, adjuvant chemotherapy, boost, and radiation-induced CD8 apoptosis (RILA). RILA was performed before RT as previously published (Ozsahin et al. Clin Cancer Res, 2005). An independent monitoring committee reviewed individual safety data. Skin toxicities were evaluated by two different clinicians at each medical visit (CTCAE v3.0). Lung CT-scan and functional pulmonary tests were performed regularly. DNA samples were screened for SNPs in candidate genes as recently published (Azria et al., Clin Cancer Res, 2008). Results: A total of 150 pts were randomized between 01/05 and 02/07. Median follow-up is 26 months (range, 3-40 months). No statistical differences were identified between the two arms in terms of mean age; initial TNM; median surgical bed volume; post surgical breast volume. Chemotherapy and RT boost were delivered in 19% and 38% of pts, respectively. Nodes received 50 Gy in 23% of patients without differences between both arms. During RT and within the first 6 weeks after RT, 10 patients (6.7%) presented grade 3 acute skin dermatitis during RT but no differences were observed between both arms (4 and 6 patients in arm A and B, respectively). At 26 month of follow-up, grade 2 and more radiation-induced subcutaneous fibrosis (RISCF) was present in 4 patients (3%) without any difference between arm A (n = 2) and B (n = 2), p=0.93. In both arms, all patients that presented a RICSF had a RILA lower than 16%. Sensitivity and specificity were 100% and 39%, respectively.No acute lung toxicities were observed and quality of life was good to excellent for all patients.SNPs analyses are still on-going (Pr Rosenstein, NY). Conclusion: Acute and early late grade 2 dermatitis were similar in both arms. The only factor that influenced RISCF was a low radiation-induced lymphocyte apoptosis yield. We confirmed prospectively the capacity of RILA for identifying hypersensitive patients to radiation. Indeed, patients with RILA superior to 16% did not present late effects to radiation and confirmed the first prospective trial we published in 2005 (Ozsahin et al., Clin Cancer Res).
Resumo:
Assuming selective vulnerability of short association U-fibers in early Alzheimer's disease (AD), we quantified demyelination of the surface white matter (dSWM) with magnetization transfer ratio (MTR) in 15 patients (Clinical Dementia Rating Scale [CDR] 0.5-1; Functional Assessment Staging [FAST]: 3-4) compared with 15 controls. MTRs were computed for 39 areas in each hemisphere. We found a bilateral MTR decrease in the temporal, cingulate, parietal, and prefrontal areas. With linear discriminant analysis, we successfully classified all the participants with 3 variates including the cuneus, parahippocampal, and superior temporal regions of the left hemisphere. The pattern of dSWM changed with the age of AD onset. In early onset patients, we found bilateral posterior demyelination spreading to the temporal areas in the left hemisphere. The late onset patients showed a distributed bilateral pattern with the temporal and cingulate areas strongly affected. A correlation with Mini Mental State Examination (MMSE), Lexis, and memory tests revealed the dSWM impact on cognition. A specific landscape of dSWM in early AD shows the potential of MTR imaging as an in vivo biomarker superior to currently used techniques.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.