1000 resultados para BAGD2MN2O7 PHASE
Resumo:
Determination of free urinary cortisol is a test of choice in the diagnosis of Cushing's syndrome. In this study, cortisol was quantified using reversed-phase high-performance liquid chromatography (RP-HPLC) in urine samples previously extracted with ether and using triamcinolone acetonide as internal standard (IS). A BDS-Hypersil-C18® column, water-acetonitrile (72:28; v/v), with a flow rate of 1.0 mL/min and detection at 243 nm were used. This method showed to be both effective and efficient, with sensitivity and linearity ranging from 2.50 to 150 μg/L, and can be used in substitution to the radioimmunoassay technique within this concentration range.
Resumo:
A dissolution test for in vitro evaluation of tablet dosage forms containing 10 mg of rupatadine was developed and validated by RP-LC. A discriminatory dissolution method was established using apparatus paddle at a stirring rate of 50 rpm with 900 mL of deaerated 0.01 M hydrochloric acid. The proposed method was validated yielding acceptable results for the parameters evaluated, and was applied for the quality control analysis of rupatadine tablets, and to evaluate the formulation during an accelerated stability study. Moreover, quantitative analyses were also performed, to compare the applicability of the RP-LC and the LC-MS/MS methods.
Resumo:
Gas-phase SiCl3+ ions undergo sequential solvolysis type reactions with water, methanol, ammonia, methylamine and propylene. Studies carried out in a Fourier Transform mass spectrometer reveal that these reactions are facile at 10-8 Torr and give rise to substituted chlorosilyl cations. Ab initio and DFT calculations reveal that these reactions proceed by addition of the silyl cation to the oxygen or nitrogen lone pair followed by a 1,3-H migration in the transition state. These transition states are calculated to lie below the energy of the reactants. By comparison, hydrolysis of gaseous CCl3+ is calculated to involve a substantial positive energy barrier.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
A method using Liquid Phase Microextraction for simultaneous detection of citalopram (CIT), paroxetine (PAR) and fluoxetine (FLU), using venlafaxine as internal standard, in plasma by high performance liquid chromatography with fluorescence detection was developed. The linearity was evaluated between 5.0 and 500 ng mL-1 (r > 0.99) and the limit of quantification was 2.0, 3.0 and 5.0 ng mL-1 for CIT, PAR and FLU, respectively. Therefore, it can be applied to therapeutic drug monitoring, pharmacokinetics or bioavailability studies and its advantages are that it necessary relatively inexpensive equipment and sample preparation techniques.
Resumo:
A new sensitive and selective procedure for speciation of trace dissolved Fe(III) and Fe(II), using modified octadecyl silica membrane disks and determination by flame atomic absorption spectrometry was developed. A ML3 complex is formed between the ligand and Fe(III) responsible for extraction of metal ion on the disk. Various factors influencing the separation of iron were investigated and the optimized operation conditions were established. Under optimum conditions, an enrichment factor of 166 was obtained for Fe3+ ions. The calibration graph using the preconcentration system for Fe3+ was linear between 40.0 and 1000.0 μg L-1.
Resumo:
A rapid and sensitive method using high performance liquid chromatography has been developed and validated for the simultaneous determination of non-steroidal anti-inflammatory drugs (NSAIDs) in pharmaceutical formulations and human serum. Six NSAIDs including: naproxen sodium, diclofenac sodium, meloxicam, flurbiprofen, tiaprofenic and mefenamic acid were analyzed simultaneously in presence of ibuprofen as internal standard on Mediterranea C18 (5 µm, 250 x 0.46 mm) column. Mobile phase comprised of methanol: acetonitrile: H2O (60:20:20, v/v; pH 3.35) and pumped at a flow rate of 1 mL min-1 using 265 nm UV detection. The method was linear over a concentration range of 0.25-50 µg mL-1 (r² = 0.9999).
Resumo:
A full two-level factorial design was employed to study the influence of PEG molar mass (MM PEG), PEG concentration (C PEG) and phosphate concentration (C PHOSPH) on proteases partition by Lentinus citrinus DPUA 1535 in a PEG/phosphate aqueous two-phase system (ATPS). For all ATPS studied, proteases partitioned for the top phase and the best proteases extraction condition was obtained with MM PEG = 6000 g mol-1, C PEG = 17.5% (w/w) and C PHOSPH = 25% (w/w) with (1.1) purification factor and (151%) activity yield. Findings reported here demonstrate a practical strategy that serves as a first step for proteases purification from crude extract by L. citrinus.
Resumo:
A fast and efficient method has been developed and validated for the determination of fipronil in bovine plasma. Samples were subjected to solid-phase extraction (SPE) followed by reversed phase liquid chromatography (LC) separation, using acetonitrile/water (60:40 v/v) as the mobile phase with a flow rate of 1.0 mL/min and ultraviolet (UV) detection at 210 nm. Ethiprole was used as the internal standard (IS). The method was found to be linear over the range 5-500 ng/mL (r = 0.999). The limit of quantitation (LOQ) was validated at 5 ng/mL. The method was successfully applied to monitor plasma concentrations following subcutaneous administration of fipronil in cattle.
Resumo:
We developed a simple, rapid, and solventless method for analyzing trihalomethanes in beer samples using headspace solid-phase microextraction. The effects of varying experimental parameters, such as extraction temperature and time, addition of sodium chloride, and agitation speed, on extraction yield were studied using a univariate experimental design. Limits of detection between 0.22 and 0.46 µg L- 1 and wide linear ranges were achieved for trihalomethanes. We measured the trihalomethane recoveries and precision (as the standard deviation of repeat measurements) and demonstrated the applicability of the proposed method by analyzing 32 beer samples.