998 resultados para Acartia clausi, c1, length


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report a combined experimental and theoretical study on the luminescence dynamics of localized carriers in disordered InGaN/GaN quantum wells. The luminescence intensity of localized carriers is found to exhibit an unusual non-exponential decay. Adopting a new model taking the radiative recombination and phonon-assisted hopping transition between different localized states into account, which was recently developed by Rubel et al., the non-exponential decay behavior of the carriers can be quantitatively interpreted. Combining with precise structure characterization, the theoretical simulations show that the localization length of localized carriers is a key parameter governing their luminescence decay dynamics. (c) 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects of lightly Si doping on the minority carrier diffusion length in n-type GaN films by analyzing photovoltaic spectra and positron annihilation measurements. We find that the minority carrier diffusion length in undoped n-type GaN is much larger than in lightly Si-doped GaN. Positron annihilation analysis demonstrates that the concentration of Ga vacancies is much higher in lightly Si-doped GaN and suggests that the Ga vacancies instead of dislocations are responsible for the smaller minority carrier diffusion length in the investigated Si-doped GaN samples due to the effects of deep level defects. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistor (HEMT) structures were grown on 2 inch sapphire substrates by MOCVD, and 0.8-mu m gate length devices were fabricated and measured. It is shown by resistance mapping that the HEMT structures have an average sheet resistance of approximately 380 Omega/sq with a uniformity of more than 96%. The 1-mm gate width devices using the materials yielded a pulsed drain current of 784 mA/mm at V-gs=0.5 V and V-ds=7 V with an extrinsic transconductance of 200 mS/mm. A 20-GHz unity current gain cutoff frequency (f(T)) and a 28-GHz maximum oscillation frequency (f(max)) were obtained. The device with a 0.6-mm gate width yielded a total output power of 2.0 W/mm (power density of 3.33 W/mm) with 41% power added efficiency (PAE) at 4 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared with the ordinary adaptive filter, the variable-length adaptive filter is more efficient (including smaller., lower power consumption and higher computational complexity output SNR) because of its tap-length learning algorithm, which is able to dynamically adapt its tap-length to the optimal tap-length that best balances the complexity and the performance of the adaptive filter. Among existing tap-length algorithms, the LMS-style Variable Tap-Length Algorithm (also called Fractional Tap-Length Algorithm or FT Algorithm) proposed by Y.Gong has the best performance because it has the fastest convergence rates and best stability. However, in some cases its performance deteriorates dramatically. To solve this problem, we first analyze the FT algorithm and point out some of its defects. Second, we propose a new FT algorithm called 'VSLMS' (Variable Step-size LMS) Style Tap-Length Learning Algorithm, which not only uses the concept of FT but also introduces a new concept of adaptive convergence slope. With this improvement the new FT algorithm has even faster convergence rates and better stability. Finally, we offer computer simulations to verify this improvement.