991 resultados para virulence genes
Resumo:
H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol lloser5 form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.
Resumo:
Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.
Resumo:
BACKGROUND: The expansion of amino acid repeats is determined by a high mutation rate and can be increased or limited by selection. It has been suggested that recent expansions could be associated with the potential of adaptation to new environments. In this work, we quantify the strength of this association, as well as the contribution of potential confounding factors. RESULTS: Mammalian positively selected genes have accumulated more recent amino acid repeats than other mammalian genes. However, we found little support for an accelerated evolutionary rate as the main driver for the expansion of amino acid repeats. The most significant predictors of amino acid repeats are gene function and GC content. There is no correlation with expression level. CONCLUSIONS: Our analyses show that amino acid repeat expansions are causally independent from protein adaptive evolution in mammalian genomes. Relaxed purifying selection or positive selection do not associate with more or more recent amino acid repeats. Their occurrence is slightly favoured by the sequence context but mainly determined by the molecular function of the gene.
Resumo:
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly-). Generation of Hly- clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly- clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly- derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly- clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.
Resumo:
Antibiotic resistance is an increasing global problem resulting from the pressure of antibiotic usage, greater mobility of the population, and industrialization. Many antibiotic resistance genes are believed to have originated in microorganisms in the environment, and to have been transferred to other bacteria through mobile genetic elements. Among others, ß-lactam antibiotics show clinical efficacy and low toxicity, and they are thus widely used as antimicrobials. Resistance to ß-lactam antibiotics is conferred by ß-lactamase genes and penicillin-binding proteins, which are chromosomal- or plasmid-encoded, although there is little information available on the contribution of other mobile genetic elements, such as phages. This study is focused on three genes that confer resistance to ß-lactam antibiotics, namely two ß-lactamase genes (blaTEM and blaCTX-M9) and one encoding a penicillin-binding protein (mecA) in bacteriophage DNA isolated from environmental water samples. The three genes were quantified in the DNA isolated from bacteriophages collected from 30 urban sewage and river water samples, using quantitative PCR amplification. All three genes were detected in the DNA of phages from all the samples tested, in some cases reaching 104 gene copies (GC) of blaTEM or 102 GC of blaCTX-M and mecA. These values are consistent with the amount of fecal pollution in the sample, except for mecA, which showed a higher number of copies in river water samples than in urban sewage. The bla genes from phage DNA were transferred by electroporation to sensitive host bacteria, which became resistant to ampicillin. blaTEM and blaCTX were detected in the DNA of the resistant clones after transfection. This study indicates that phages are reservoirs of resistance genes in the environment.
Resumo:
Background: The combination of oleoyl-estrone (OE) and a selective b3-adrenergic agonist (B3A; CL316,243) treatment in rats results in a profound and rapid wasting of body reserves (lipid). Methods: In the present study we investigated the effect of OE (oral gavage) and/or B3A (subcutaneous constant infusion) administration for 10 days to overweight male rats, compared with controls, on three distinct white adipose tissue (WAT) sites: subcutaneous inguinal, retroperitoneal and epididymal. Tissue weight, DNA (and, from these values cellularity), cAMP content and the expression of several key energy handling metabolism and control genes were analyzed and computed in relation to the whole site mass. Results: Both OE and B3A significantly decreased WAT mass, with no loss of DNA (cell numbers). OE decreased and B3A increased cAMP. Gene expression patterns were markedly different for OE and B3A. OE tended to decrease expression of most genes studied, with no changes (versus controls) of lipolytic but decrease of lipogenic enzyme genes. The effects of B3A were widely different, with a generalized increase in the expression of most genes, including the adrenergic receptors, and, especially the uncoupling protein UCP1. Discussion: OE and B3A, elicit widely different responses in WAT gene expression, end producing similar effects, such as shrinking of WAT, loss of fat, maintenance of cell numbers. OE acted essentially on the balance of lipolysislipogenesis and the blocking of the uptake of substrates; its decrease of synthesis favouring lipolysis. B3A induced a shotgun increase in the expression of most regulatory systems in the adipocyte, an effect that in the end favoured again the loss of lipid; this barely selective increase probably produces inefficiency, which coupled with the increase in UCP1 expression may help WAT to waste energy through thermogenesis. Conclusions: There were considerable differences in the responses of the three WAT sites. OE in general lowered gene expression and stealthily induced a substrate imbalance. B3A increasing the expression of most genes enhanced energy waste through inefficiency rather than through specific pathway activation. There was not a synergistic effect between OE and B3A in WAT, but their combined action increased WAT energy waste.
Resumo:
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.
Resumo:
Penicillin resistance in Streptococcus spp. involves multiple mutations in both penicillin-binding proteins (PBPs) and non-PBP genes. Here, we studied the development of penicillin resistance in the oral commensal Streptococcus gordonii. Cyclic exposure of bacteria to twofold-increasing penicillin concentrations selected for a progressive 250- to 500-fold MIC increase (from 0.008 to between 2 and 4 microg/ml). The major MIC increase (> or = 35-fold) was related to non-PBP mutations, whereas PBP mutations accounted only for a 4- to 8-fold additional increase. PBP mutations occurred in class B PBPs 2X and 2B, which carry a transpeptidase domain, but not in class A PBP 1A, 1B, or 2A, which carry an additional transglycosylase domain. Therefore, we tested whether inactivation of class A PBPs affected resistance development in spite of the absence of mutations. Deletion of PBP 1A or 2A profoundly slowed down resistance development but only moderately affected resistance in already highly resistant mutants (MIC = 2 to 4 microg/ml). Thus, class A PBPs might facilitate early development of resistance by stabilizing penicillin-altered peptidoglycan via transglycosylation, whereas they might be less indispensable in highly resistant mutants which have reestablished a penicillin-insensitive cell wall-building machinery. The contribution of PBP and non-PBP mutations alone could be individualized in DNA transformation. Both PBP and non-PBP mutations conferred some level of intrinsic resistance, but combining the mutations synergized them to ensure high-level resistance (> or = 2 microg/ml). The results underline the complexity of penicillin resistance development and suggest that inhibition of transglycosylase might be an as yet underestimated way to interfere with early resistance development.
Resumo:
If the importance of triiodothyronine (T3) on brain development including myelinogenesis has long been recognized, its mechanism of action at the gene level is still not fully elucidated. We studied the effect of T3 on the expression of myelin protein genes in aggregating brain cell cultures. T3 increases the concentrations of mRNA transcribed from the following four myelin protein genes: myelin basic protein (Mbp), myelin-associated glycoprotein (Mag), proteolipid protein (Plp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp). T3 is not only a triggering signal for oligodendrocyte differentiation, but it has continuous stimulatory effects on myelin gene expression. Transcription in isolated nuclei experiments shows that T3 increases Mag and Cnp transcription rates. After inhibiting transcription with actinomycin D, we measured the half-lives of specific mRNAs. Our results show that T3 increases the stability of mRNA for myelin basic protein, and probably proteolipid protein. In vitro translation followed by myelin basic protein-specific immunoprecipitation showed a direct stimulatory effect of T3 on myelin basic protein mRNA translation. Moreover, this stimulation was higher when the mRNA was already stabilized in culture, indicating that stabilization is achieved through mRNA structural modifications. These results demonstrate the diverse and multiple mechanisms of T3 stimulation of myelin protein genes.
Resumo:
Natural Killer (NK) cells are of special interest in solid organ transplantation (SOT) because classical immunosuppressive drugs could enhance NK cells activity.We studied NK cells after kidney transplantation in three different situations. First, we analysed the peripheral repertoire reconstitution and function of NK cells after a polyclonal rabbit anti-thymocytes globulin (rATG) induction therapy, in 20 patients transplanted with living donor and with a low immunological risk. Second, we analysed the influence of KIR genes on the risk of CMV primo-infection or reactivation in 224 transplanted patients during the first year. Finally, we studied the risk of rejection and graft function during the first 5 years according to the KIR genes. Our study demonstrates that after an intial drop, NK cell reconstitution is fast with a ratio of CD56+/CD3− cells versus CD3+ cells that remains identical. The fraction of NK cells expressing the inhibitory receptor NKG2A significantly increases and the activating receptor NKG2D decreases after transplantation to retrieve the pretransplantation value after one year. The secretion of INF-f × and the cytotoxicity is maintained over time after transplantation. Then, we demonstrated that the presence of 2 KIR missing ligands and a large number of activating KIR gene protected against CMV primo-infection or reactivation during the first year post transplantation. Finally, the KIR genes and their HLA ligands do not influence the long term graft function after univariate and multivariate analysis. Our data suggest that despite the modification of the receptor repertoire, NK cell activity is preserved. NK cells are an important player of the immune response in the first year after transplantation mainly thanks to their anti-infectious activity.
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Resumo:
BACKGROUND: Small RNAs (sRNAs) are widespread among bacteria and have diverse regulatory roles. Most of these sRNAs have been discovered by a combination of computational and experimental methods. In Pseudomonas aeruginosa, a ubiquitous Gram-negative bacterium and opportunistic human pathogen, the GacS/GacA two-component system positively controls the transcription of two sRNAs (RsmY, RsmZ), which are crucial for the expression of genes involved in virulence. In the biocontrol bacterium Pseudomonas fluorescens CHA0, three GacA-controlled sRNAs (RsmX, RsmY, RsmZ) regulate the response to oxidative stress and the expression of extracellular products including biocontrol factors. RsmX, RsmY and RsmZ contain multiple unpaired GGA motifs and control the expression of target mRNAs at the translational level, by sequestration of translational repressor proteins of the RsmA family. RESULTS: A combined computational and experimental approach enabled us to identify 14 intergenic regions encoding sRNAs in P. aeruginosa. Eight of these regions encode newly identified sRNAs. The intergenic region 1698 was found to specify a novel GacA-controlled sRNA termed RgsA. GacA regulation appeared to be indirect. In P. fluorescens CHA0, an RgsA homolog was also expressed under positive GacA control. This 120-nt sRNA contained a single GGA motif and, unlike RsmX, RsmY and RsmZ, was unable to derepress translation of the hcnA gene (involved in the biosynthesis of the biocontrol factor hydrogen cyanide), but contributed to the bacterium's resistance to hydrogen peroxide. In both P. aeruginosa and P. fluorescens the stress sigma factor RpoS was essential for RgsA expression. CONCLUSION: The discovery of an additional sRNA expressed under GacA control in two Pseudomonas species highlights the complexity of this global regulatory system and suggests that the mode of action of GacA control may be more elaborate than previously suspected. Our results also confirm that several GGA motifs are required in an sRNA for sequestration of the RsmA protein.
Resumo:
Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.
Resumo:
BACKGROUND: Mood disorders are polygenic disorders in which the alteration of several susceptibility genes results in dysfunctional mood regulation. However, the molecular mechanisms underlying their transcriptional dysregulation are still unclear. The transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) have been implicated in rodent models of depression. We previously provided evidence that Bdnf expression critically rely on a potent CREB coactivator called CREB-regulated transcription coactivator 1 (CRTC1). METHODS: To further evaluate the role of CRTC1 in the brain, we generated a knockout mouse line and analyzed its behavioral and molecular phenotype. RESULTS: We found that mice lacking CRTC1 associate neurobehavioral endophenotypes related to mood disorders. Crtc1(-/-) mice exhibit impulsive aggressiveness, social withdrawal, and decreased sexual motivation, together with increased behavioral despair, anhedonia, and anxiety-related behavior in the novelty-induced hypophagia test. They also present psychomotor retardation as well as increased emotional response to stressful events. Crtc1(-/-) mice have a blunted response to the antidepressant fluoxetine in behavioral despair paradigms, whereas fluoxetine normalizes their aggressiveness and their behavioral response in the novelty-induced hypophagia test. Crtc1(-/-) mice strikingly show, in addition to a reduced dopamine and serotonin turnover in the prefrontal cortex, a concomitant decreased expression of several susceptibility genes involved in neuroplasticity, including Bdnf, its receptor TrkB, the nuclear receptors Nr4a1-3, and several other CREB-regulated genes. CONCLUSIONS: Collectively, these findings support a role for the CRTC1-CREB pathway in mood disorders etiology and behavioral response to antidepressants and identify CRTC1 as an essential coactivator of genes involved in mood regulation.