997 resultados para transit rate
Resumo:
Photometric transit surveys promise to complement the currently known sample of extra-solar planets (ESPs) by providing additional information on the planets and especially their radii. Here, we present ESP candidates from one such survey called, the Wide Angle Search for Planets (WASP) obtained with the SuperWASP wide-field imaging system. Observations were taken with SuperWASP North located in La Palma during the 2004 April to October observing season. The data cover fields between 23 and 03 h in RA at declinations above +12. This amounts to over ~400000 stars with V magnitudes 8-13.5. For the stars brighter than 12.5, we achieve better than 1 per cent photometric precision. Here, we present 41 sources with low-amplitude variability between ~1 and 10 mmag, from which we select 12 with periods between 1.2 and 4.4 d as the most promising ESP candidates. We discuss the properties of these ESP candidates, the expected fraction of transits recovered for our sample and implications for the frequency and detection of hot-Jupiters.
Resumo:
Excitation rate coefficients, for transitions from the ground level to excited levels of Gd XXXVII, have been calculated over the temperature range 5002500 eV using the R-matrix method. It is observed that the contribution of resonances enhances the rates by up to an order of magnitude over the available (non- resonant) results of Hagelstein.
Resumo:
Collision strengths for all transitions up to and including the n = 5 levels of Al XIII have been computed in the LS coupling scheme using the R-matrix code. All partial waves with angular momentum L less than or equal to 45 have been included, and resonances have been resolved in a fine energy grid in the threshold region. Collision strengths are tabulated at energies above thresholds in the range 162.30 less than or equal to E less than or equal to 220.0 Ry, and results for the 1s-2s and 1s-2p transitions are compared with those of previous authors. Additionally, effective collision strengths, obtained after integrating the collision strengths over a Maxwellian distribution of electron velocities, are tabulated over a wide temperature range of 4.40 less than or equal to log T-e less than or equal to 6.40 K.
Resumo:
Photoionization cross-sections out of the fine-structure levels (2S(2)2p(4) P-3(2,0,1)) of the O-like Fe ion Fe XIX have been reinvestigated. Data for photoionization out of each of these finestructure levels have been obtained, where the calculations have been performed with and without the inclusion of radiation damping on the resonance structure in order to assess the importance of this process. Recombination rate coefficients are determined using the Milne relation, for the case of an electron recombining with N-like Fe ions (Fe XX) in the ground state to form O-like Fe (Fe XIX) existing in each of the fine- structure ground-state levels. Recombination rates are presented over a temperature range similar to 4.0 less than or equal to log T-e less than or equal to 7.0, of importance to the modelling of X-ray emission plasmas.
Resumo:
We present a fast and efficient hybrid algorithm for selecting exoplanetary candidates from wide-field transit surveys. Our method is based on the widely used SysRem and Box Least-Squares (BLS) algorithms. Patterns of systematic error that are common to all stars on the frame are mapped and eliminated using the SysRem algorithm. The remaining systematic errors caused by spatially localized flat-fielding and other errors are quantified using a boxcar-smoothing method. We show that the dimensions of the search-parameter space can be reduced greatly by carrying out an initial BLS search on a coarse grid of reduced dimensions, followed by Newton-Raphson refinement of the transit parameters in the vicinity of the most significant solutions. We illustrate the method's operation by applying it to data from one field of the SuperWASP survey, comprising 2300 observations of 7840 stars brighter than V = 13.0. We identify 11 likely transit candidates. We reject stars that exhibit significant ellipsoidal variations caused indicative of a stellar-mass companion. We use colours and proper motions from the Two Micron All Sky Survey and USNO-B1.0 surveys to estimate the stellar parameters and the companion radius. We find that two stars showing unambiguous transit signals pass all these tests, and so qualify for detailed high-resolution spectroscopic follow-up.