986 resultados para precision genome engineering
Resumo:
The paper presents simple graphical procedures for the position synthesis of plane linkage mechanisms with sliding inputs and output to generate functions of two independent variables. The procedures are based on point position reduction and permit synthesis of the linkage to satisfy up to five arbitrarily selected precision positions.
Resumo:
he growth of high-performance application in computer graphics, signal processing and scientific computing is a key driver for high performance, fixed latency; pipelined floating point dividers. Solutions available in the literature use large lookup table for double precision floating point operations.In this paper, we propose a cost effective, fixed latency pipelined divider using modified Taylor-series expansion for double precision floating point operations. We reduce chip area by using a smaller lookup table. We show that the latency of the proposed divider is 49.4 times the latency of a full-adder. The proposed divider reduces chip area by about 81% than the pipelined divider in [9] which is based on modified Taylor-series.
Resumo:
In the recent time CFD tools have become increasingly useful in the engineering design studies especially in the area of aerospace vehicles. This is largely due to the advent of high speed computing platforms in addition to the development of new efficient algorithms. The algorithms based on kinetic schemes have been shown to be very robust and further meshless methods offer certain advantages over the other methods. Preliminary investigations of blood flow visualization through artery using CFD tool have shown encouraging results which further needs to be verified and validated.
Resumo:
A novel approach for measurement of small rotation angles using imaging method is proposed and demonstrated. A plane mirror placed on a precision rotating table is used for imaging the newly designed composite coded pattern. The imaged patterns are captured with the help of a CCD camera. The angular rotation of the plane mirror is determined from a pair of the images of the pattern, captured once before and once after affecting the tilt of the mirror. Both simulation and experimental results suggest that the proposed approach not only retains the advantages of the original imaging method but also contributes significantly to the enhancement of its measuring range (+/- 4.13 degrees with accuracy of the order of 1 arcsec).
Resumo:
The standard Gibbs energies of formation of RuO2 and OsO2 at high temperature have been determined with high precision, using a novel apparatus that incorporates a buffer electrode between the reference and working electrodes, The buffer electrode absorbs the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential, The buffer electrode prevents polarization of the measuring electrode and ensures accurate data, The standard Gibbs energies of formation (Delta(f)G degrees) of RuO2, in the temperature range of 900-1500 K, and OsO2, in the range of 900-1200 K, can be represented by the equations Delta(f)G degrees(RuO2)(J/mol) = -324 720 + 354.21T - 23.490T In T Delta(f)G degrees(OsO2)(J/mol) = -304 740 + 318.80T - 18.444T In T where the temperature T is given in Kelvin and the deviation of the measurement is +/- 80 J/mol, The high-temperature heat ;capacities of RuO2 and OsO2 are measured using differential scanning calorimetry. The information for both the low- and high-temperature heat rapacity of RuO2 is coupled with the Delta(f)G degrees data obtained in this study to evaluate the standard enthalpy of formation of RuO2 at 298.15 K (Delta(f)H degrees(298.15K)). The low-temperature heat capacity of OsO2 has not been measured: therefore, the standard enthalpy and entropy of formation of OsO2 at 298.15 K (Delta(f)H degrees(298.15K) and S degrees(298.15K), respectively) are derived simultaneously through an optimization procedure from the high-temperature heat capacity and the Gibbs energy of formation. Both Delta fH degrees(298.15K) and S degrees(298.15K) are treated as variables in the optimization routine, For RuO2, the standard enthalpy of formation at 298.15 K is Delta fH degrees(298.15K) (RuO2) -313.52 +/- 0.08 kJ/mol, and that for OsO2 is Delta(f)H degrees(298.15K) (OSO2) = -295.96 +/- 0.08 kJ/mol. The standard entropy of OsO2 at 298.15 K that has been obtained from the optimization is given as S degrees(298.15K) (OsO2) = 49.8 +/- 0.2 J (mol K)(-1).
Resumo:
In this paper, the work that has been done in several laboratories and academic institutions in India in the area of wind engineering in the past 20–30 years has been reviewed. Studies on extreme and mean hourly winds, philosophies adopted in model studies in wind tunnels and some of the important results that have been obtained are described. Suggestions for future studies are indicated.
Resumo:
A thermodynamic study of the Ti-O system at 1573 K has been conducted using a combination of thermogravimetric and emf techniques. The results indicate that the variation of oxygen potential with the nonstoichiometric parameter delta in stability domain of TiO2-delta with rutile structure can be represented by the relation, Delta mu o(2) = -6RT In delta - 711970(+/-1600) J/mol. The corresponding relation between non-stoichiometric parameter delta and partial pressure of oxygen across the whole stability range of TiO2-delta at 1573 K is delta proportional to P-O2(-1/6). It is therefore evident that the oxygen deficient behavior of nonstoichiometric TiO2-delta is dominated by the presence of doubly charged oxygen vacancies and free electrons. The high-precision measurements enabled the resolution of oxygen potential steps corresponding to the different Magneli phases (Ti-n O2n-1) up to n = 15. Beyond this value of n, the oxygen potential steps were too small to be resolved. Based on composition of the Magneli phase in equilibrium with TiO2-delta, the maximum value of n is estimated to be 28. The chemical potential of titanium was derived as a function of composition using the Gibbs-Duhem relation. Gibbs energies of formation of the Magneli phases were derived from the chemical potentials of oxygen and titanium. The values of -2441.8(+/-5.8) kJ/mol for Ti4O7 and -1775.4(+/-4.3) kJ/mol for Ti3O5 Obtained in this study refine values of -2436.2(+/-26.1) kJ/mol and-1771.3(+/-6.9) kJ/mol, respectively, given in the JANAF thermochemical tables.
Resumo:
Thirteen host guest compounds of 3,5-dihydroxybenzoic acid (DHBA) have been structurally characterized. Water molecules occupy the peripheries of a hexagonal void, created with DHBA molecules, and act as ``hooks'' to connect the guest molecules with the host-framework via hydrogen bonding. The ``water hook'' is an OH group acting as a donor. Consequently, the guest molecules were chosen so that they contain good hydrogen bond acceptor functionalities. A number of multicomponent hydrates were isolated with stoichiometries (DHBA)(x)(H2O). (guest),. Of these, compounds with the following as guests were obtained as crystals that were good enough for single crystal work: ethyl acetate (EtOAc), diethyl oxalate, dimethyl oxalate, di(n-propyl) oxalate, diethyl malonate, diethyl succinate, chloroacetonitrile, N,N-dimethyl formamide (DMF), acetone, dimethyl sulfoxide (DMSO), 1-propanol, and 2-butanol. From 2-butanol, a hemihydrate, (DHBA)(2)(H2O), was also obtained concomitantly. Further to guest stabilization, water acts as a good mediator of effective crystal packing and also determines the topology of the host framework. En the present series of compounds, the role of water is wide ranging, and it is not easy to classify it specifically as a host or as a guest.
Resumo:
The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.
Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases
Resumo:
Protein tyrosine phosphorylation plays an important role in cell growth, development and oncogenesis. No classical protein tyrosine kinase has hitherto been cloned from plants. Does protein tyrosine kinase exist in plants? To address this, we have performed a genomic survey of protein tyrosine kinase motifs in plants using the delineated tyrosine phosphorylation motifs from the animal system. The Arabidopsis thaliana genome encodes 57 different protein kinases that have tyrosine kinase motifs. Animal non-receptor tyrosine kinases, SRC, ABL, LYN, FES, SEK, KIN and RAS have structural relationship with putative plant tyrosine kinases. In an extended analysis, animal receptor and non-receptor kinases, Raf and Ras kinases, mixed lineage kinases and plant serine/threonine/tyrosine (STY) protein kinases, form a well-supported group sharing a common origin within the superfamily of STY kinases. We report that plants lack bona fide tyrosine kinases, which raise an intriguing possibility that tyrosine phosphorylation is carried out by dual-specificity STY protein kinases in plants. The distribution pattern of STY protein kinase families on Arabidopsis chromosomes indicates that this gene family is partly a consequence of duplication and reshuffling of the Arabidopsis genome and of the generation of tandem repeats. Genome-wide analysis is supported by the functional expression and characterization of At2g24360 and phosphoproteomics of Arabidopsis. Evidence for tyrosine phosphorylated proteins is provided by alkaline hydrolysis, anti-phosphotyrosine immunoblotting, phosphoamino acid analysis and peptide mass fingerprinting. These results report the first comprehensive survey of genome-wide and tyrosine phosphoproteome analysis of plant STY protein kinases.