983 resultados para metal pollution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-insulator-metal (MIM) capacitors for DRAM applications have been realised using stacked TiO2-ZrO2 (TiO2/ZrO2 and ZrO2/TiO2) and Si-doped ZrO2 (TiO2/Si-doped ZrO2) dielectrics. High capacitance densities (> 42 fF/mu m(2)), low leakage current densities (< 5 x 10(-7) A/cm(2) at -1 V), and sub-nm EOT (< 0.8 nm) have been achieved. The effects of constant voltage stress on the device characteristics is studied. The structural analysis of the samples is performed by X-ray diffraction measurements, and this is correlated to the electrical characteristics of the devices. The surface chemical states of the films are analyzed through X-ray photoelectron spectroscopy measurements. The doped-dielectric stack (TiO2/Si-doped ZrO2) helps to reduce leakage current density and improve reliability, with a marginal reduction in capacitance density; compared to their undoped counterparts (TiO2/ZrO2 and ZrO2/TiO2). We compare the device performance of the fabricated capacitors with other stacked high-k MIM capacitors reported in recent literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular organization of donor and acceptor chromophores in self-assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light-harvesting systems. With this in mind, a redox-active porous interpenetrated metal-organic framework (MOF), {Cd(bpdc)(bpNDI)]4.5H(2)ODMF}(n) (1) has been constructed from a mixed chromophoric system. The -oxo-bridged secondary building unit, {Cd-2(-OCO)(2)}, guides the parallel alignment of bpNDI (N,N-di(4-pyridyl)-1,4,5,8-naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH(2)=4,4-biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter-net electron transfer. Encapsulation of electron-donating aromatic molecules in the electron-deficient channels of 1 leads to a perfect donor-acceptor co-facial organization, resulting in long-lived charge-separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of inserting ultra-thin atomic layer deposited Al2O3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low(Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al2O3/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al2O3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al2O3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al2O3/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current-voltage characteristics displayed by these devices. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K2Cr8O16, which exhibits a temperature-dependent (T-dependent) paramagnetic-to-ferromagnetic- metal transition at T-C = 180 K and transforms into a ferromagnetic insulator below T-MI = 95 K. We observe clear T-dependent dynamic valence (charge) fluctuations from above T-C to T-MI, which effectively get pinned to an average nominal valence of Cr+3.75 (Cr4+:Cr3+ states in a 3:1 ratio) in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0) similar to 3.5(k(B)T(MI)) similar to 35 meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U similar to 4 eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr) and the half-metallic ferromagnetism in the t(2g) up-spin band favor a low-energy Peierls metal-insulator transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO2 (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO2/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO2/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights. (C) 2015 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the stability analysis of functionally graded plate integrated with piezoelectric actuator and sensor at the top and bottom face, subjected to electrical and mechanical loading. The finite element formulation is based on first order and higher order shear deformation theory, degenerated shell element, von-Karman hypothesis and piezoelectric effect. The equation for static analysis is derived by using the minimum energy principle and solutions for critical buckling load is obtained by solving eigenvalue problem. The material properties of the functionally graded plate are assumed to be graded along the thickness direction according to simple power law function. Two types of boundary conditions are used, such as SSSS (simply supported) and CSCS (simply supported along two opposite side perpendicular to the direction of compression and clamped along the other two sides). Sensor voltage is calculated using present analysis for various power law indices and FG (functionally graded) material gradations. The stability analysis of piezoelectric FG plate is carried out to present the effects of power law index, material variations, applied mechanical pressure and piezo effect on buckling and stability characteristics of FG plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past four decades, CeO2 has been recognized as an attractive material in the area of auto exhaust catalysis because of its unique redox properties. In the presence of CeO2, the catalytic activity of noble metals supported on Al2O3 is enhanced due to higher dispersion of noble metals in their ionic form. In the last few years, we have been exploring an entirely new approach of dispersing noble metal ions on CeO2 and TiO2 matrices for redox catalysis. In this study, the dispersion of noble metal ions by solution combustion as well as other methods over CeO2 and TiO2 resulting mainly in Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-ySnxMyO2-delta, Ce1-x-yFexMyO2-delta, Ce1-x-yZrxMyO2-delta and Ti1-xMxO2-delta (M = Pd, Pt, Rh and Ru) catalysts, the structure of these materials, their catalytic properties toward different types of catalysis, structure-property relationships and mechanisms of catalytic reactions are reviewed. In these catalysts, noble metal ions are incorporated into a substrate matrix to a certain limit in a solid solution form. Lower valent noble metal-ion substitution in CeO2 and TiO2 creates noble metal ionic sites and oxide ion vacancies that act as adsorption sites for redox catalysis. It has been demonstrated that these new generation noble metal ionic catalysts (NMIC) have been found to be catalytically more active than conventional nanocrystalline noble metal catalysts dispersed on oxide supports.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ambiguous behavior of metal-graphene interface has been addressed in this paper using density functional theory and nonequilibrium Green's function formalism. For the first time, the fundamental chemistry of metal-graphene interface, in particular role of sp-hybridized and sp(2)-hybridized carbon atoms, has been emphasized and discussed in detail in this paper. It was discovered that the sp-hybridized sites at the edge of a graphene monolayer contribute to 40% of current conduction when compared with sp(2)-hybridized atom sites in the graphene-metal overlap region. Moreover, we highlighted the insignificance of an additional metal layer, i.e., sandwiched contact, due to lacking sp-hybridized carbon sites. A fundamental way of defining the contact resistance, while keeping chemical bonding in mind, has been proposed. The bonding insight has been further used to propose the novel ways of interfacing metal with graphene, which results in a 40% reduction in contact resistance.