999 resultados para ice sheet


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nineties, cold-water coral mounds were discovered in the Porcupine Seabight (NE Atlantic, west of Ireland). A decade later, this discovery led to the drilling of the entire Challenger cold-water coral mound (Eastern slope, Porcupine Seabight) during IODP Expedition 307. As more than 50% of the sediment within Challenger Mound consists of terrigenous material, the terrigenous component is equally important for the build-up of the mound as the framework-building corals. Moreover, the terrigenous fraction contains important information on the dynamics and the conditions of the depositional environment during mound development. In this study, the first in-depth investigation of the terrigenous sediment fraction of a cold-water coral mound is performed, combining clay mineralogy, sedimentology, petrography and Sr-Nd-isotopic analysis on a gravity core (MD01-2451G) collected at the top of Challenger Mound. Sr- and Nd-isotopic fingerprinting identifies Ireland as the main contributor of terrigenous material in Challenger Mound. Besides this, a variable input of volcanic material from the northern volcanic provinces (Iceland and/or the NW British Isles) is recognized in most of the samples. This volcanic material was most likely transported to Challenger Mound during cold climatic stages. In three samples, the isotopic ratios indicate a minor contribution of sediment deriving from the old cratons on Greenland, Scandinavia or Canada. The grain-size distributions of glacial sediments demonstrate that ice-rafted debris was deposited with little or no sorting, indicating a slow bottom-current regime. In contrast, interglacial intervals contain strongly current-sorted sediments, including reworked glacio-marine grains. The micro textures of the quartz-sand grains confirm the presence of grains transported by icebergs in interglacial intervals. These observations highlight the role of ice-rafting as an important transport mechanism of terrigenous material towards the mound during the Late Quaternary. Furthermore, elevated smectite content in the siliciclastic, glaciomarine sediment intervals is linked to the deglaciation history of the British-Irish Ice Sheet (BIIS). The increase of smectite is attributed to the initial stage of chemical weathering processes, which became activated following glacial retreat and the onset of warmer climatic conditions. During these deglaciations a significant change in the signature of the detrital fraction and a lack of coral growth is observed. Therefore, we postulate that the deglaciation of the BIIS has an important effect on mound growth. It can seriously alter the hydrography, nutrient supply and sedimentation processes, thereby affecting both sediment input and coral growth and hence, coral mound development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pressing scientific questions concerning the Greenland ice sheet's climatic sensitivity, hydrology, and contributions to current and future sea level rise require hydrological datasets to resolve. While direct observations of ice sheet meltwater losses can be obtained in terrestrial rivers draining the ice sheet and from lake levels, few such datasets exist. We present a new dataset of meltwater river discharge for the vicinity of Kangerlussuaq, Southwest Greenland. The dataset contains measurements of river stage and discharge for three sites along the Akuliarusiarsuup Kuua (Watson) River's northern tributary, with 30 minute temporal resolution between June 2008 and August 2010. Additional data of water temperature, air pressure, and lake water depth and temperature are also provided. Discharge data were measured at sites with near-ideal properties for such data collection. Regardless, high water bedload and turbulent flow introduce considerable uncertainty. These were constrained and quantified using statistical techniques, thereby providing a high quality dataset from this important site. The greatest data uncertainties are associated with streambed elevation change and measurements. Large portions of stream channels deepened according to statistical tests, but poor precision of streambed depth measurements also added uncertainty. Quality checked data are freely available for scientific use as supplementary online material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the stable isotopic analysis of planktonic and benthic foraminifers from Ocean Drilling Program Core 1148 of the northern South China Sea (SCS), Pliocene-Pleistocene isotope stratigraphy and events have been reconstructed. The benthic foraminiferal delta18O record shows that the Pacific intermediate water had a greater influence upon the SCS or the Pacific deep water above ~2600 m was warmer before ~3.2Ma than at present. After that, the benthic delta18O conspicuously increased during the ~3.2-2.5 Ma period, in correspondence to the formation of the Northern Hemisphere ice sheet, whereas the planktonic delta18O signal suggests a stepwise overall decrease of sea surface temperature during the ~2.2-0.9 Ma period. Compared to the equatorial Pacific records, the decrease in planktonic (Globigerinoides ruber) delta13C during the ~3.2-2.2 Ma period is particularly striking, suggesting that fertility of surface water increased noticeably. According to the modern delta13C distribution of G. ruber in the northern SCS, it is inferred that the East Asian winter monsoon strengthened during this interval. Afterwards, there were several conspicuous decreases of G. ruber delta13C at ~1.7, 1.3, 0.9, 0.45 and 0.15 Ma BP, that is, about every 0.4 Ma, suggesting that the East Asian winter monsoon became episodically stronger. This is confirmed by changes in relative abundance of planktonic foraminifer species Neogloboquadrina dutertrei, a typical East Asian winter monsoon proxy. The deepwater delta13C of the SCS is close to that of the Pacific, but lighter than that of the Atlantic, implying that the pattern of deep water originating mainly from the Atlantic and through the Pacific entering the SCS existed at least since the early Pliocene. After 1.4 Ma, the benthic delta13C signal decreased conspicuously but with a periodicity of ~100 ka, suggesting that the deep-water ventilation of the SCS was reduced, probably corresponding to a decrease of the North Atlantic Deep Water and/or further isolation of the SCS deep basin from the Pacific during glaciations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first comprehensive dataset (492 samples) of dissolved Mn in the Southern Ocean shows extremely low values of 0.04 up to 0.64 nM in the surface waters and a subsurface maximum with an average concentration of 0.31 nM (n=20; S.D.=0.08 nM). The low Mn in surface waters correlates well with the nutrients PO4 and NO3 and moderately well with Si(OH)4 and fluorescence. Furthermore, elevated concentrations of Mn in the surface layer coincide with elevated Fe and light transmission and decreased export (234Th/238U deficiency) and fluorescence. It appears that Mn is a factor of importance in partly explaining the HNLC conditions in the Southern Ocean, in conjunction with significant controls by the combination of Fe limitation and light limitation. No input of Mn from the continental margins was observed. This is ascribed to the protruding continental ice sheet that covers the shelf and shuts down the usual biological production, microbial breakdown and sedimentary geochemical cycling. The low concentrations of Mn in the deep ocean basins (0.07-0.23 nM) were quite uniform, but some elevations were observed. The highest deep concentrations of Mn were observed at the Bouvet Triple Junction region and coincided with high concentrations of Fe and are deemed to be from hydrothermal input. The deep basins on both sides of the ridge were affected by this input. In the deep Weddell Basin the input of Weddell Sea Bottom Water appears to be the source of the slightly elevated concentrations of Mn in this water layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Faunal and stable isotopic data in Sites 646 and 647 provide a ~0.9-Ma paleoclimatic and paleoceanographic record for the Labrador Sea, that is supported by a floral record for the past ~0.3 Ma. At both sites, most glacial stages generally are dominated by polar fauna and flora with low species diversity. Although minor occurrences of subpolar species also were observed in lowermost parts of several glacial stages in Site 646, the faunal classification of Ruddiman and Mclntyre (1976) suggested the presence of polar ecological water masses in the area during most of the glacial periods. In several glacial stages at Site 647, both the faunal and floral data indicate that early periods were marked by subpolar and transitional ecological water masses. The interglacials are characterized by a polar fauna at Site 646 and by polar and transitional faunas and floras at Site 647. However, several interglacial stages in Site 646 include a subpolar flora, in contrast to a planktonic foraminifer fauna similar to that found in the glacial stages. The occurrence of subpolar water masses in several glacial isotopic stages indicates significant northward advection of warmer waters into the Labrador Sea during the early glacial periods, which provided a corridor of oceanic warmth extending from mid- to high latitudes and contributed an additional source of moisture for continental ice-sheet growth. Similar conditions also were documented in the northwest Labrador Sea, Grand Banks, and the North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The earliest Oligocene (~33.5 Ma) is marked by a major step in the long-term transition from an ice-free to glaciated world. The transition, characterized by both cooling and ice-sheet growth, triggered a transient but extreme glacial period designated Oi-1. High-resolution isotope records suggest that Oi-1 lasted for roughly 400,000 yr (the duration of magnetochron 13N) before partially abating, and that it was accompanied by an ocean-wide carbon isotope anomaly of 0.75?. One hypothesis relates the carbon isotope anomaly to enhanced export production brought about by climate-induced intensification of wind stress and upwelling, particularly in the Southern Ocean. To understand how this climatic event affected export production in the Southern Ocean, biogenic silica (opal) and carbonate accumulation rates were computed for the sub-polar Indian Ocean using deep-sea cores from ODP Site 744, Kerguelen Plateau. Our findings suggest that net productivity in this region increased by several fold in response to the Oi-1 glaciation. In addition, calcareous primary producers dominant in the Late Eocene were partially replaced by opaline organisms suggesting a trend toward seasonally greater surface divergence and upwelling in this sector of the Southern Ocean. We attribute these changes to intensification of atmospheric=oceanic circulation brought about by high-latitude cooling and the appearance of a full-scale continental ice-sheet on East Antarctica. Higher terrigenous sediment accumulation rates support the idea that wind-induced changes in regional productivity were augmented by an increased supply of glacial dust and debris that provided limiting micro-nutrients (e.g., iron-rich dust particles). We speculate that the rapid changes in biogenic sediment accumulation in the Southern Ocean and other upwelling-dominated regions contributed to the ocean-wide positive carbon isotope anomaly by temporarily increasing the burial rate of organic carbon relative to carbonate carbon. The changes in burial rates, in turn, may have produced a positive feedback on climate by briefly drawing down atmospheric pCO2 .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A major trough ('Belgica Trough') eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ('Belgica TMF') on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/subsea ice, and 4) seasonal open-marine. In the seasonal open-marine facies we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess 210Pb activity at three core sites and 44 AMS 14C dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-)fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO 14C ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after ~36.0 corrected 14C ka before present (B.P.). It retreated from the outer shelf at ~25.5 ka B.P., the middle shelf at ~19.8 ka B.P., the inner shelf in Eltanin Bay at ~12.3 ka B.P., and the inner shelf in Ronne Entrance at ~6.3 ka B.P.. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Agulhas Ridge, off the tip of Africa between the Atlantic and Indian Oceans, is ideally located to capture the evolution of Paleogene-early Neogene circulation patterns associated with global cooling. Multiproxy records of productivity (biogenic barium (Baex), opal, CaCO3 mass accumulation rates (MARs)), nutrient and organic carbon burial (reactive phosphorus (Pr) MARs), and redox state of deep waters (U enrichment) from Ocean Drilling Program (ODP) Site 1090 reflect hydrographic shifts in this region between the middle Eocene and early Oligocene (~9-33 Ma). Several peaks in increased export productivity and burial of organic matter occurred within the late Eocene (~36.5, ~34, and ~33.7 Ma), which along with surface hydrologic conditions favoring opaline organisms over calcareous organisms could have aided in the draw down of pCO2 to a threshold level that facilitated large ice sheet development on Antarctica in the earliest Oligocene. Our multiproxy approach illustrates the importance of vertical as well as spatial hydrographic reorganization in amplifying or driving climatic cooling of the middle Eocene to early Oligocene by facilitating increases in the relative or absolute burial of organic carbon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable oxygen and carbon isotope and sedimentological-paleontological investigations supported by accelerator mass spectrometry 14C datings were carried out on cores from north of 85°N in the eastern central Arctic Ocean. Significant changes in accumulation rates, provenance of ice-rafted debris (IRD), and planktic productivity over the past 80,000 years are documented. During peak glacials, i.e., oxygen isotope stages 4 and 2, the Arctic Ocean was covered by sea ice with decreased seasonal variation, limiting planktic productivity and bulk sedimentation rates. In early stage 3 and during Termination I, major deglaciations of the circum-Arctic regions caused lowered salinities and poor oxygenation of central Arctic surface waters. A meltwater spike and an associated IRD peak dated to ~14-12 14C ka can be traced over the southern Eurasian Basin of the Arctic Ocean. This event was associated with the early and rapid deglaciation of the marine-based Barents Sea Ice Sheet. A separate Termination Ib meltwater event is most conspicuous in the central Arctic and is associated with characteristic dolomitic carbonate IRD. This lithology suggests an origin of glacial ice from northern Canada and northern Greenland where lower Paleozoic platform carbonates crop extensively out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Continuous sediment sections spanning the last 2.8 Ma have been studied using stable isotope stratigraphy and sedimentological methods. By using paleomagnetic reversals as a chronostratigraphic tool, climatic and paleoceanographic changes have been placed in a time framework. The results show that the major expansion of the Scandinavian Ice Sheet to the coastal areas occurred in the late Neogene period at about 2.8 Ma. Relatively high-amplitude glacials appeared until about 2 Ma. The period between 2.8 and 1.2 Ma was marked by cold surface water conditions with only weak influx of temperate Atlantic water as compared with late Quaternary interglacials. During this period, climatic variations were smaller in amplitude than in the late Quaternary. The Norwegian Sea was a sink of deep water throughout the studied period but deep water ventilation was reduced and calcite dissolution was high compared with the Holocene. Deep water formed by other processes than today. Between 2 and 1.2 Ma, glaciations in Scandinavia were relatively small. A transition toward larger glacials took place during the period 1.2 to 0.6 Ma, corresponding with warmer interglacials and increasing influx of temperate surface water during interglacials. A strong thermal gradient was present between the Norwegian Sea and the northeastern Atlantic during the Matuyama (2.5-0.7 Ma). This is interpreted as a sign of a more zonal and less meridional climatic system over the region as compared with the present situation. The transition towards more meridionality took place over several hundred thousand yr. Only during the last 0.6 Ma has the oceanographic and climatic system of the Norwegian Sea varied in the manner described from previous studies of the late Quaternary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Belgica Trough and the adjacent Belgica Trough Mouth Fan in the southern Bellingshausen Sea (Pacific sector of the Southern Ocean) mark the location of a major outlet for the West Antarctic Ice Sheet during the Late Quaternary. The drainage basin of an ice stream that advanced through Belgica Trough across the shelf during the last glacial period comprised an area exceeding 200,000 km**2 in the West Antarctic hinterland. Previous studies, mainly based on marine-geophysical data from the continental shelf and slope, focused on the bathymetry and seafloor bedforms, and the reconstruction of associated depositional processes and ice- drainage patterns. In contrast, there was only sparse information from seabed sediments recovered by coring. In this paper, we present lithological and clay mineralogical data of 21 sediment cores collected from the shelf and slope of the southern Bellingshausen Sea. Most cores recovered three lithological units, which can be attributed to facies types deposited under glacial, transitional and seasonally open-marine conditions. The clay mineral assemblages document coinciding changes in provenance. The relationship between the clay mineral assemblages in the subglacial and proglacial sediments on the shelf and the glacial diamictons on the slope confirms that a grounded ice stream advanced through Belgica Trough to the shelf break during the past, thereby depositing detritus eroded in the West Antarctic hinterland as soft till on the shelf and as glaciogenic debris flows on the slope. The thinness of the transitional and seasonally open-marine sediments in the cores suggests that this ice advance occurred during the last glacial period. Clay mineralogical, acoustic sub-bottom and seismic data furthermore demonstrate that the palaeo-ice stream probably reworked old sedimentary strata, including older tills, on the shelf and incorporated this debris into its till bed. The geographical heterogeneity of the clay mineral assemblages in the sub- and proglacial diamictons and gravelly deposits indicates that they were eroded from underlying sedimentary strata of different ages. These strata may have been deposited during either different phases of the last glacial period or different glacial and interglacial periods. Additionally, the clay mineralogical heterogeneity of the soft tills recovered on the shelf suggests that the drainage area of the palaeo-ice stream flowing through Belgica Trough changed through time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sedimentary processes in the southeastern Weddell Sea are influenced by glacial-interglacial ice-shelf dynamics and the cyclonic circulation of the Weddell Gyre, which affects all water masses down to the sea floor. Significantly increased sedimentation rates occur during glacial stages, when ice sheets advance to the shelf edge and trigger gravitational sediment transport to the deep sea. Downslope transport on the Crary Fan and off Dronning Maud and Coats Land is channelized into three huge channel systems, which originate on the eastern-, the central and the western Crary Fan. They gradually turn from a northerly direction eastward until they follow a course parallel to the continental slope. All channels show strongly asymmetric cross sections with well-developed levees on their northwestern sides, forming wedge-shaped sediment bodies. They level off very gently. Levees on the southeastern sides are small, if present at all. This characteristic morphology likely results from the process of combined turbidite-contourite deposition. Strong thermohaline currents of the Weddell Gyre entrain particles from turbidity-current suspensions, which flow down the channels, and carry them westward out of the channel where they settle on a surface gently dipping away from the channel. These sediments are intercalated with overbank deposits of high-energy and high-volume turbidity currents, which preferentially flood the left of the channels (looking downchannel) as a result of Coriolis force. In the distal setting of the easternmost channel-levee complex, where thermohaline currents are directed northeastward as a result of a recirculation of water masses from the Enderby Basin, the setting and the internal structures of a wedge-shaped sediment body indicate a contourite drift rather than a channel levee. Dating of the sediments reveals that the levees in their present form started to develop with a late Miocene cooling event, which caused an expansion of the East Antarctic Ice Sheet and an invigoration of thermohaline current activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat-sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.