989 resultados para hour
Resumo:
This paper presents a system for electrochemical hydride generation using flow-injection and atomic absorption spectrometry to determine selenium in biological materials. The electrolytic cell was constructed by assembling two reservoirs, one for the sample and the other for the electrolytic solution separated by a Nafion membrane. Each compartment had a Pt electrode. The sample and electrolyte flow-rates, acidic media, and applied current were adjusted to attain the best analytical performance and ensure the membrane lifetime. The atomisation system used a T quartz tube in an air-LPG flame. The composition of the flame, the observation height, and the argon flow rate used to carry the hydrides were critically investigated. The system allowed to perform thirty determinations per hour with a detection limit of 10 mug L-1 of Se. Relative standard deviations were in general lower than 1.5% for a solution containing 20.0 and 34.0 mug L-1 of Se in a typical sample digest. Accuracy was assessed analysing the certified materials: rice flour (NIST-1568) from National Institute of Standard and Technology and dried fish (MA-A-2), whole animal blood (A-2/1974) from the International Atomic Energy Agency.
Resumo:
A simple and low cost flow cell is proposed for measurements by solid-phase spectrophotometry employing a conventional spectrophotometer. The flow cell geometry allows the employment of a large amount of the solid support without causing both excessive attenuation of the radiation beam and increasing of the back-pressure. The adaptation of the flow cell in the optical path of the spectrophotometer in order to increase the precision is discussed. The flow cell characteristics were demonstrated by measurements of Co(II), employing 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18 bonded silica as solid support. The apparent molar absorptivity and coefficient of variation were estimated as 1.86 x 10(5) L mol-1 cm-1 and 1.4 % (n=15). A sample throughput of 40 determinations per hour and a detection limit of 15 mug L-1 (99.7 % confidence level) were achieved.
Resumo:
A flow injection spectrophotometric method was developed for determining aspartame in sweeteners. Sample was dissolved in water and 250 µL of the solution was injected into a carrier stream of 5.0 x 10-5 mol L-1 sodium borate solution. The sample flowed through a column (14 cm x 2.0 mm) packed with Zn3(PO4)2 immobilized in a polymeric matrix of polyester resin and Zn(II) ions were released from the solid-phase reactor by formation of the Zn(II)-aspartame complex. The mixture merged with a stream of borate buffer solution (pH 9.0) containing 0.030 % (m/v) alizarin red S and the Zn(II)-alizarin red complex formed was measured spectrophotometrically at 540 nm. The calibration graph for aspartame was linear in the concentration range from 10 to 80 µg mL-1 with a detection limit of 4 µg mL-1 of aspartame. The RSD was 0.3 % for a solution containing 40 µg mL-1 aspartame (n = 10) and seventy results were obtained per hour. The proposed method was applied for determining aspartame in commercial sweeteners.
Resumo:
Different methods have been applied to solve special problems of metal analysis. First, the solid samples of tool steels were analyzed by X-ray fluorescence. Alternatively, an on-line electrodissolution implemented in a flow injection system and conventional dissolution procedure for determination of W, Mo, V and Cr in tool steels by ICP-AES is described. The resulting analyte solutions were compared with conventional dissolution procedure and determination by ICP-AES. The electrolytic procedure presented a good performance characterized by a sample throughput of 164 determinations per hour. Results were in agreement with those obtained by conventional acid dissolution.
Resumo:
The objective of this study was to evaluate a flow injection system for determination of residual CO3(2-) in soil amended with lime material. It was used a closed system were the CO2 released from soil sample acidified with 0.5 mol L-1 HCl was capted in a 0.2 mol L-1 NaOH solution. After 16h the capted CO2 was determined by conductivimetry using a flow injection system. The results obtained by the proposed method were significantly correlated with those reported in soil samples used by the International Soil Analytical Exchange Programe. The regression equation was: y = 0.987x -- 0.075 r = 0.996, P > 0.01. For acid soils amended with CaCO3 the method showed a deviation error of 2.7%, detection limit was 0.077 mmol kg-1 of CO3(2-), and a recovery of 99.7% of the total CO3(2-) added in soil sample. The method was easily adapted for routine determination of residual CO3(2-) in soil samples with an analytical frequency of 40 samples per hour.
Resumo:
A spectrophotometric flow injection analysis (FIA) procedure employing natural urease enzyme source for the determination of urea in animal blood plasma was developed. Among leguminous plants used in the Brazilian agriculture, the Cajanus cajan specie was selected as urease source considering its efficiency and availability. A minicolumn was filled with leguminous fragments and coupled to the FIA manifold, where urea was on-line converted to ammonium ions and subsequently it was quantified by spectrophotometry. The system was employed to determine urea in animal plasma samples without any prior treatment. Accuracy was assessed by comparison results with those obtained employing the official procedure and no significant difference at 90 % confidence level was observed. Other profitable features such as an analytical throughput of 30 determinations per hour, a reagent consumption of 19.2 mg sodium salicylate, 0.5 mg sodium hipochloride and a relative standard deviation of 1.4 % (n= 12) were also obtained.
Resumo:
Tämän opinnäytetyön tarkoituksena oli selvittää seisokkitunnista aiheutuvat kustannukset ja tulonmenetykset eri polttolinjoille ja niiden kombinaatioille Ekokem Oy Ab:n jätteenpolttolaitoksessa. Työ suoritettiin tarkastelemalla prosessitietokantaan tallentunutta tietoa sekä keräämällä tietoa haastatteluilla. Jätetulon menetyksen määrittelytavalla oli keskeinen vaikutus tulonmenetysten muodostumiseen. Muita kustannuksiin ja tulonmenetyksiin vaikuttavia tekijöitä olivat vuodenaika, seisokin pituus ja energiantoimituksen sopimukset. Kaikissa seisokeissa ei välttämättä aiheudu välitöntä jätetulon menetystä, mutta käsittelemättä jäävän jätteen voidaan silti nähdä aiheuttavan tilapäisvarastoinnin tarvetta, josta aiheutuu kustannuksia. Tämän vuoksi eri polttolinjojen jätetulon menetys laskettiin kahdella tavalla olettaen ensin kaiken polttamatta jäävän jätteen aiheuttavan jätetulon menetystä sekä siten, että jätetulon menetys ja mahdollisesta varastoinnista aiheutuvat kustannukset arvioitiin kokemusperäisesti. Jätetulon todellisten menetysten määräytyminen voi tapahtua kummalla tavalla hyvänsä riippuen seisokkihetkellä vallitsevista olosuhteista. Kustannukset ja tulonmenetykset laskettiin kolmelle eripituiselle ajanjaksolle ja jaettiin tuntihinnoiksi. Työssä käsitellyille eri seisokkitilanteille saatiin 131 eri tuntihintaa kun muuttujia vaihdeltiin. Suurimmat kustannukset ja tulonmenetykset muodostuivat jätevoimalan seisokista lämmityskaudella. Tämä johtui siitä, että jätevoimalassa poltettavaa yhdyskuntajätettä ei pystytä varastoimaan toisin kuin ongelmajätteitä. Jätevoimalan seisokkitunti voi lämmityskaudella maksaa enimmillään 2600 €/h, josta menetetyn jätetulon osuus on liki puolet. Lisäksi jätevoimalan höyryntuotanto on yli puolet kokonaistuotannosta.
Resumo:
Simultaneous electrolytic deposition is proposed for minimization of Cu2+ and Pb2+ interferences on automated determination of Cd2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v) HNO3 + 0.1% (v/v) H2SO4 + 0.5 mol L-1 NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb2+ and Cu2+ levels up to 50 and 250 mg L-1 respectively, can be tolerated without interference. With on-line extraction of Cd2+ in anionic resin minicolumn, calibration graph in the 5.00 - 50.0 µg Cd L-1 range is obtained, corresponding to twenty measurements per hour, 0.7 mg Malachite Green and 500 mg KI and 5 mL sample consumed per determination. Results of the determination of Cd in certified reference materials, vegetables and tap water were in agreement with certified values and with those obtained by GFAAS at 95% confidence level. The detection limit is 0.23 µg Cd L-1 and the RSD for typical samples containing 13.0 µg Cd L-1 was 3.85 % (n= 12).
Resumo:
The objective of this study was to develop a method for the direct determination of residual CO3(2-) in acid soil using a flow system coupled with pervaporation. The gas released from the acidified sample was separated though a hydrophobic membrane and detected by conductivimetry. The detection limit was 0.054 mmol c kg-1 for CO2/CO3(2-) with relative error of 3.1%. The analytical frequency was 20 samples per hour. The method is recommended for studying the reactions and kinetics of lime applied in acid soils.
Resumo:
This paper presents an automatic procedure employing a reagent in the form of a slurry in a flow-injection system. The feasibility of the proposal is demonstrated by sulphate determination in water using the Barium Chloranilate method, which is based on the precipitation of barium sulphate. The release of a stoichiometric amount of highly colored chloranilic ions is monitored at 528 nm. The reaction is carried out in alcoholic medium in order to reduce the solubility of the reagent. A considerable improvement in the sensitivity is attained by adding ferric ions to the released chloranilic ions. An on-line filtration step to separate the excess reagent from the released chloranilic ions was necessary. In addition, a column containing a cation exchange resin was included in the manifold to remove potentially interfering ions. The proposed procedure is suitable for 30 determinations per hour and the relative standard deviation is less than 2%. The analytical curve is linear between 0.0 and 40 mg L-1 and the determination limit is about 2.0 mg L-1SO4(2-). Accuracy was confirmed by running several samples already analysed by a standard turbidimetric procedure.
Resumo:
A flow injection spectrophotometric procedure is proposed for the determination of paracetamol (acetaminophen) in pharmaceutical formulations. Powdered and liquid samples were previously dissolved/diluted in 0.05 mol L-1 hydrochloric acid solution and a volume of 250 µL was injected directly into a carrier stream of this same acid solution, flowing at 2.5 mL min-1. Paracetamol reacts with sodium hypochlorite forming N-acetyl-p-benzoquinoneimine which then reacts with sodium salicylate in sodium hydroxide solution yielding a blue indophenol dye which was measured at 640 nm in the pH range of 9.5-10.0. Paracetamol was determined in pharmaceutical products in the 1.0 to 100.0 mg L-1 (3.3x10-6 a 6.6x10-4 mol L-1) concentration range, with a detection limit of 0.5 mg L-1 (1.6x10-6 mol L-1). The recovery of this analyte in five samples ranged from 98.0 to 103.6 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1% for paracetamol concentrations of 25.0, 50.0 and 75.0 mg L-1 (n=10). A paired t-test showed that all results obtained for paracetamol in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A flow injection spectrophotometric procedure was developed for the determination of metamizol in pharmaceutical formulations. The system is based on the reaction between metamizol and triiodide generated in the system by mixing iodate and iodide-starch solutions. The absorbance of triiodide-starch complex giving a steady-state baseline value which was monitored at 580 nm. The inverse peaks caused by metamizol samples were measured and there was a direct relationship between absorbance decreasing and metamizol concentration from 1.4 x 10-4 to 7.0 x 10-4 mol L-1. The RSD was 0.45 % for a metamizol solution 4.2 x 10-4 mol L-1 (n = 10) with a detection limit (three-fold blank standard deviation/slope) of 6.0 x 10-5 mol L-1 The feasibility of the system was demonstrated for the determination of metamizol in commercial samples with sixty results obtained per hour. The results obtained for metamizol in pharmaceutical formulations using the proposed flow procedure and those obtained using an iodimetric procedure are in agreement at the 95% confidence level and within an acceptable range of error.
Resumo:
An automatic flow injection procedure for spectrophotometric aluminium determination in purified water and solutions containing high salts concentrations used for hemodyalisis treatment was developed. The method was base on reaction of Al3+ with cianine eriochrome R (ECR) after preconcentration using the AG50W-X8 cationic-exchange resin. Elution was carried out using a 1 % (m/v) calcium chloride solution. The manifold comprised an automatic proporcional injector controlled by a computer equipped with an eletronic interface and software written in QuicBASIC 4.5 with facilities to control the injector and perform data acquisition. Samples with concentration ranging from 4.96 to 19.90 µg L-1 Al were analyzed and recoveries between 88 and 113% were obtained by using the standard addition method. Other profitable analytical characteristics such as a relative standard deviation 1.3 % (n = 10) for a typical sample 14.5 µg L-1 Al, a linear response ranging up to 60.0 µg L-1Al, and a sampling throughput of 10 determinations per hour were achieved. A detection limit of 4.2 µg L-1 Al was estimated as suggested by IUPAC.
Resumo:
This article suggests a sequence of experiments on the preparation, analysis and some photochemical aspects of potassium tris (oxalato) ferrate(III) trihydrate. The sequence of experiments could be carried out in four or five 4-hour laboratory periods. The new part of this article is related to the kinetics studies involving the ambient illumination as well as the use of the cellophane paper of different colors as light filters. The aspects such as quantum yield, light absorption and photochemical reactions are explored in order to illustrate the relationships between the exposure time, light intensity and wavelength range on the photochemical reactions.