995 resultados para disulfide bond


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adhesiveness of six root canal sealers: Acroseal, Endo CPM, Epiphany, White MTA, Sealapex and Sealer 26 to dentin, was evaluated in a push-out test design. Methods: Twenty eight roots of freshly extracted teeth were gauged with a size 5 Largo drill. With a cutting machine slices of 2 mm were prepared, rinsed with 5.25% NaOCl and a final rinse with 17% EDTA, dried and filled with one of the sealers. After setting their bond strength was measured in a mechanical testing machine. The data were statistically analyzed by using a One Way ANOVA and post hoc Tukey test. Results: The mean and standard deviation from values of bond strength was: Sealapex 2.2±0.4; Endo CPM 3.8±1.3; White MTA 6.0±1.4; Epiphany 10.9±2.6; Sealer 26 12.3±2.3; and Acroseal 12.2±1.4. Acroseal, Sealer 26 and Epiphany presented a significantly (P<0.01) greater bond strength compared with the other sealers. Also White MTA showed higher adhesiveness compared with Endo CPM and Sealapex (P<0.01). Conclusion: The bond strength between endodontic sealers and root dentin was maximal when Acroseal, Sealer 26 and Epiphany were used; Sealapex e Endo CPM, in turn, presented the lowest bond strength mean values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 +/- 1 and 60 +/- 2 degrees C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 +/- 15.9, 52.2 +/- 23.6, and 59.9 +/- 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach, the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and nonconfinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from supersymmetric quantum mechanics formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy. (c) 2015 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to evaluate the resin micro-tensile bond strength (MTBS) stability of a leucite-reinforced ceramic after different ceramic etching protocols. The microtensile test had 40 ceramic blocks (5x5x6 mm) assigned to five groups (n=8), in accordance with the following surface etching protocols: NE nonetched (control); 9HF: hydrofluoric (HF) acid etching (9% HF)+wash/dry; 4HF: 4%HF+wash/dry; 5HF: 5%HF+wash/dry; and 5HF+N: 5%HF+neutralizer+wash/dry+ultrasonic-cleaning. Etched ceramic surfaces were treated with a silane agent. Next, resin cement blocks were built on the prepared ceramic surface and stored for 24 hours in distilled water at 37 degrees C. The specimens were then sectioned to obtain microtensile beams (32/block), which were randomly assigned to the following conditions, nonaged (immediate test) and aged (water storage for 150 days plus 12,000 thermal cycles), before the microtensile test. Bond strength data were submitted to one-way analysis of variance and Tukey test (alpha=0.05). Additional ceramic samples were subjected to the different ceramic etching protocols and evaluated using a scanning electron microscope (n=2) and atomic force microscopy (n=2). Aging led to a statistically significant decrease in the MTBS for all groups, except the untreated one (NE). Among the groups submitted to the same aging conditions, the untreated (NE) revealed inferior MTBS values compared to the 9HF and 4HF groups. The 5HF and 5HF+N groups had intermediate mean values, being statistically similar to the higher values presented by the 9HF and 4HF groups and to the lower value associated with the NE group. The neutralization procedure did not enhance the ceramic/resin cement bond strength. HF acid etching is a crucial step in resin/ceramic bonding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the internal fit, marginal adaptation, and bond strengths of inlays made of computer-aided design/computer-aided manufacturing feldspathic ceramic and polymer-infiltrated ceramic. Twenty molars were randomly selected and prepared to receive inlays that were milled from both materials. Before cementation, internal fit was achieved using the replica technique by molding the internal surface with addition silicone and measuring the cement thicknesses of the pulpal and axial walls. Marginal adaptation was measured on the occlusal and proximal margins of the replica. The inlays were then cemented using resin cement (Panavia F2.0) and subjected to two million thermomechanical cycles in water (200 N load and 3.8-Hz frequency). The restored teeth were then cut into beams, using a lathe, for microtensile testing. The contact angles, marginal integrity, and surface patterns after etching were also observed. Statistical analysis was performed using two-way repeated measures analysis of variance (p<0.05), the Tukey test for internal fit and marginal adaptation, and the Student t-test for bond strength. The failure types (adhesive or cohesive) were classified on each fractured beam. The results showed that the misfit of the pulpal walls (p=0.0002) and the marginal adaptation (p=0.0001) of the feldspathic ceramic were significantly higher when compared to those of the polymer-infiltrated ceramic, while the bond strength values of the former were higher when compared to those of the latter. The contact angle of the polymer-infiltrated ceramic was also higher. In the present study, the hybrid ceramic presented improved internal and marginal adaptation, but the bond strengths were higher for the feldspathic ceramic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: This study evaluated the durability of bond strength to enamel using total-etch (Single Bond/SB) and self-etch (Clearfil SE Bond/CSEB) adhesives associated with neody-mium: yttrium-aluminu- garnet (Nd:YAG) laser irradiation through the uncured adhesives.Methods: Bovine incisors were worn to expose an area of enamel and were divided into four groups: group 1 (control) SB + polymerization; group 2 (control) CSEB + polymerization; group 3 (laser) - B + Nd:YAG laser (174.16 J/cm(2)) + polymerization; and group 4 (laser) CSEB + Nd:YAG (174.16 J/cm(2)) + polymerization. Blocks of composite were fabricated and stored for 24 hours or 12 months, sectioned into beams, and submitted to microtensile tests. Results were analyzed by three-way analysis of variance (ANOVA) (adhesive, technique, and storage time) and Tukey tests.Results: ANOVA revealed significant differences for adhesive 3 technique and technique 3 storage time (p<0.05). The mean values (MPa) for interaction adhesive x technique (standard deviation) were as follows: SB/control = 35.78 (6.04)a; SB/laser = 26.40 (7.25)b, CSEB/control = 26.32 (5.71)b, CSEB/laser = 23.90 (7.49)b. For interaction technique x storage time the mean values were as follows: control/24 hours = 32.58 (6.49)a; control/12 months = 29.52 (8.38)a; laser/24 hours = 29.37 (5.71)a; laser/12 months = 20.92 (6.5)b. Groups with the same letters showed no statistically significant differences.Conclusion: Scanning electron microscope analysis showed evident areas of micromorphological alterations in lased samples after 12 months of water storage. Nd: YAG laser irradiation of enamel through unpolymerized totaletch adhesive significantly reduced bond strength compared with the control. Bond strength decreased when enamel samples irradiated with Nd: YAG laser through unpolymerized adhesives were stored in water for 12 months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.