983 resultados para cogumelo medicinal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em História da Arte

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química, especialidade Química Orgânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As intervenções arqueológicas concretizadas entre 1999-2001 permitiram o reconhecimento de contextos referentes ao Hospital Real de Todos-os-Santos, nomeadamente o claustro NE, bem como uma estrutura hidráulica no seu perímetro interno. A identificação do espólio cerâmico e vítreo aqui descartado permite, numa primeira fase, a aferição cronológica e tipológica destes e, consequentemente, do perfil funcional (utilitário, de cozinha e medicinal), numa tentativa de padronização do conjunto arte factual no edifício hospitalar e na cidade de Lisboa. Num segundo estágio, pretendese obter uma leitura concreta no que concerne ao período de utilização desta estrutura, indo de encontro às distintas áreas a vigorar no espaço claustral.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salvia divinorum Epling & Jativa is an hallucinogenic mint traditionally used for curing and divination by the Mazatec Indians of Oaxaca, Mexico. Young people from Mexican cities were reported to smoke dried leaves of S. divinorum as a marijuana substitute. Recently, two S. divinorum specimens were seized in a large-scale illicit in-door and out-door hemp plantation. Salvinorin A also called divinorin A, a trans-neoclerodane diterpene, was identified in several organic solvent extracts by gas chromatography-mass spectrometry. The botanical identity of the plant was confirmed by comparing it to an authentic herbarium specimen. More plants were then discovered in Swiss horticulturists greenhouses. All these data taken together suggest that many attempts exist in Switzerland to use S. divinorum as a recreational drug. This phenomenon may be enhanced because neither the magic mint, nor its active compound are banned substances listed in the Swiss narcotic law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proline-specific dipeptidyl aminopeptidase IV (DPP IV, DPP-4, CD26), widely expressed in mammalians, releases X-Pro/Ala dipeptides from the N-terminus of peptides. DPP IV is responsible of the degradation of the incretin peptide hormones regulating blood glucose levels. Several families of DPP IV inhibitors have been synthesized and evaluated. Their positive effects on the degradation of the incretins and the control of blood glucose levels have been demonstrated in biological models and in clinical trials. Presently, several DPP IV inhibitors, the "gliptins", are approved for type 2 diabetes or are under clinical evaluation. However, the gliptins may also be of therapeutic interest for other diseases beyond the inhibition of incretin degradation. In this Perspective, the biological functions and potential substrates of DPP IV enzymes are reviewed and the characteristics of the DPP IV inhibitors are discussed in view of type 2 diabetes and further therapeutic interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catharanthus roseus is the sole biological source of the medicinal compounds vinblastine and vincristine. These chemotherapeutic compounds are produced in the aerial organs of the plant, however they accumulate in small amounts constituting only about 0.0002% of the fresh weight of the leaf. Their limited biological supply and high economical value makes its biosynthesis important to study. Vinblastine and vincristine are dimeric monoterpene indole alkaloids, which consists of two monomers vindoline and catharanthine. The monoterpene indole alkaloids (MIA's) contain a monoterpene moiety which is derived from the iridoid secologanin and an indole moiety tryptamine derived from the amino acid tryptophan. The biosynthesis of the monoterpene indole alkaloids has been localized to at least three cell types namely, the epidermis, the laticifer and the internal phloem assisted parenchyma. Carborundum abrasion (CA) technique was developed to selectively harvest epidermis enriched plant material. This technique can be used to harvest metabolites, protein or RNA. Sequencing of an expressed sequence tagged (EST) library from epidermis enriched mRNA demonstrated that this cell type is active in synthesizing a variety of secondary metabolites namely, flavonoids, lipids, triterpenes and monoterpene indole alkaloids. Virtually all of the known genes involved in monterpene indole alkaloid biosynthesis were sequenced from this library.This EST library is a source for many candidate genes involved in MIA biosynthesis. A contig derived from 12 EST's had high similarity (E'^') to a salicylic acid methyltransferase. Cloning and functional characterization of this gene revealed that it was the carboxyl methyltransferase imethyltransferase (LAMT). In planta characterization of LAMT revealed that it has a 10- fold enrichment in the leaf epidermis as compared to the whole leaf specific activity. Characterization of the recombinant enzyme revealed that vLAMT has a narrow substate specificity as it only accepts loganic acid (100%) and secologanic acid (10%) as substrates. rLAMT has a high Km value for its substrate loganic acid (14.76 mM) and shows strong product inhibition for loganin (Kj 215 |iM). The strong product inhibition and low affinity for its substrate may suggest why the iridoid moiety is the limiting factor in monoterpene indole alkaloid biosynthesis. Metabolite profiling of C. roseus organs shows that secologanin accumulates within these organs and constitutues 0.07- 0.45% of the fresh weight; however loganin does not accumulate within these organs suggesting that the product inhibition of loganin with LAMT is not physiologically relevant. The limiting factor to iridoid and MIA biosynthesis seems to be related to the spatial separation of secologanin and the MIA pathway, although secologanin is synthesized in the epidermis, only 2-5% of the total secologanin is found in the epidermis while the remaining secologanin is found within the leaf body inaccessable to alkaloid biosynthesis. These studies emphasize the biochemical specialization of the epidermis for the production of secondary metabolites. The epidermal cells synthesize metabolites that are sequestered within the plant and metabolites that are secreted to the leaf surface. The secreted metabolites comprise the epidermome, a layer separating the plant from its environment.